izpis_h1_title_alt

Generalized noncooperative Schrödinger-Kirchhoff-type systems in ${\mathbb R}^N$
ID Chems Eddine, Nabil (Author), ID Repovš, Dušan (Author)

.pdfPDF - Presentation file, Download (631,53 KB)
MD5: BC2DA6095A7129CA7D4459D3C6FB8565
URLURL - Source URL, Visit https://onlinelibrary.wiley.com/doi/10.1002/mana.202200503 This link opens in a new window

Abstract
We consider a class of noncooperative Schrödinger-Kirchhof-type system, which involves a general variable exponent elliptic operator with critical growth. Under certain suitable conditions on the nonlinearities, we establish the existence of infinitely many solutions for the problem by using the limit index theory, a version of concentration-compactness principle for weighted-variable exponent Sobolev spaces and the principle of symmetric criticality of Krawcewicz and Marzantowicz.

Language:English
Keywords:concentration–compactness principle, critical points theory, critical Sobolev exponents, generalized capillary operator, limit index theory, p-Laplacian, p(x)-Laplacian, Palais–Smale condition, Schrödinger-Kirchhoff-type problems, weighted exponent spaces
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2024
Number of pages:Str. 2092–2121
Numbering:Vol. 297, iss. 6
PID:20.500.12556/RUL-158506 This link opens in a new window
UDC:517.9
ISSN on article:0025-584X
DOI:10.1002/mana.202200503 This link opens in a new window
COBISS.SI-ID:186454787 This link opens in a new window
Publication date in RUL:14.06.2024
Views:321
Downloads:70
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Mathematische Nachrichten
Shortened title:Math. Nachr.
Publisher:Wiley
ISSN:0025-584X
COBISS.SI-ID:25915392 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Projects

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0292
Name:Topologija in njena uporaba

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-4031
Name:Računalniška knjižnica za zavozlane strukture in aplikacije

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-4001
Name:Izbrani problemi iz uporabne in računske topologije

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0278
Name:Biološka koda vozlov - identifikacija vzorcev vozlanja v biomolekulah z uporabo umetne inteligence

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0114
Name:Algebrajski odtisi geometrijskih značilnosti v homologiji

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0083
Name:Forsing, fuzija in kombinatorika odprtih pokritij

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back