izpis_h1_title_alt

Contributions to Maker-Breaker Game : doctoral thesis
ID Dokyeesun, Pakanun (Author), ID Klavžar, Sandi (Mentor) More about this mentor... This link opens in a new window, ID Bujtás, Csilla (Comentor)

.pdfPDF - Presentation file, Download (1,04 MB)
MD5: 5D0E23510B441EDF01D7645CB64F6B61

Abstract
The framework of the dissertation is the theory of the Maker-Breaker game, a game being played by two players, Maker and Breaker, on a hypergraph ${\cal H}$. The vertex set of ${\cal H}$ is the board of the game, while the hyperedges are winning sets. The two players take turns to choose an unplayed vertex from the board. Due to the great generality of hypergraphs, the winning sets can be defined such that they reflect many different situations. For this reason, too, the game was developed and extensively studied in the last decades and is an appealing topic of modern combinatorics. In the most studied variants of the game, the winning sets represent some vertex or edge sets of a graph with specified properties. In this thesis, we focus on the Maker-Breaker domination game (MBD game) and biased Maker-Breaker game, especially the biased monochromatic clique transversal game (MCT game). In these versions, the players are named Dominator and Staller. We define the winning number of the players, respectively, and establish some general related results for the Maker-Breaker game. We discuss similarities and differences of the Maker-Breaker domination game from Dominator's and Staller's points of view and determine fast winning strategies for both players. We also introduce the SMBD-number, which is the minimum number of moves Staller needs to win, and prove some general properties, including the relation between SMBD-numbers and the minimum degree of a graph. Then, we explore the MBD game on trees and present a characterization for trees with SMBD-number $k$, for every positive integer $k$. Exact formulas for paths, caterpillars, tadpole graphs, and most of the subdivided stars are also determined. Furthermore, we investigate the outcome of the MBD game on Cartesian products of paths and cycles, of complete bipartite graphs, and provide a fast winning strategy for the winner of the game. For the $(a,b)$-MCT game, we determine thresholds for triangle-free graphs, bounds for thresholds for disjoint union of graphs, and thresholds for Cartesian products of paths and cycles.

Language:English
Keywords:Maker-Breaker game, Maker-Breaker domination game, monochromatic clique transversal game
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-158192 This link opens in a new window
UDC:519.17
COBISS.SI-ID:197056771 This link opens in a new window
Publication date in RUL:29.05.2024
Views:342
Downloads:80
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Prispevki k igri izdelovalec-lomilec
Abstract:
Okvir disertacije je teorija igre izdelovalec-lomilec, ki jo igrata dva igralca, Izdelovalec in Lomilec, na hipergrafu ${\cal H}$. Množica vozlišč hipergrafa ${\cal H}$ je igralna plošča, povezave hipergrafa pa so zmagovalne množice. Igralca izmenično izbirata do tedaj še neizbrano vozlišče hipergrafa. Zaradi velike splošnosti hipergrafov lahko zmagovalne množice definiramo tako, da odražajo veliko različnih situacij. Tudi zato je bila igra v zadnjih desetletjih razvita in obsežno proučevana ter je privlačna tema sodobne kombinatorike. V najbolj raziskanih različicah igre zmagovalne množice predstavljajo nekatere množice vozlišč ali povezav grafa z določenimi lastnostmi. V tej disertaciji se osredotočamo na dominacijsko igro izdelovalec-lomilec (igra MBD) in na pristransko igro izdelovalec-lomilec, zlasti na pristransko monokromatično klično transverzalno igro (igra MCT). V teh verzijah igre igralca imenujemo Dominator in Zavlačevalka. Opredelimo zmagovalno število za oba igralca in določimo nekaj splošnih povezanih rezultatov za igro izdelovalec-lomilec. Razpravljamo o podobnostih in razlikah dominacijske igre izdelovalec-lomilec z Dominatorjevega in Zavlačevalkinega vidika ter določimo hitre zmagovalne strategije za oba igralca. Uvedemo tudi število SMBD, ki je najmanjše število potez, ki jih Zavlačevalka potrebuje za zmago, in dokažemo nekatere splošne lastnosti, vključno z razmerjem med številom SMBD in najmanjšo stopnjo grafa. Nato raziskujemo igro MBD na drevesih in predstavimo karakterizacijo za drevesa s številom SMBD $k$ za vsako pozitivno celo število $k$. Določene so tudi natančne formule za poti, gosenice, ciklov s pripeto potjo in večino subdividiranih zvezd. Poleg tega raziskujemo izid igre MDB na kartezičnih produktih poti in ciklov ter polnih dvodelnih grafov in podamo hitro zmagovalno strategijo za zmagovalca igre. Za igro $(a,b)$-MCT določimo prage za grafe brez trikotnikov, meje za prage za nepovezane unije grafov in prage za kartezične produkte poti in ciklov.

Keywords:igra izdelovalec-lomilec, dominacijska igra izdelovalec-lomilec, monokromatična klično transverzalna igra

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back