Details

Detekcija položaja kroglice na igralniški ruleti s pomočjo računalniškega vida : diplomsko delo
ID Žgur, Tadej (Author), ID Solina, Franc (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,55 MB)
MD5: 323E59A747455C4AEB08299A854D65E6

Language:Slovenian
Keywords:računalniški vid, detekcija robov, igralniška ruleta, detekcija številke in igralniške rulete, igralnice, univerzitetni študij, diplomske naloge
Work type:Undergraduate thesis
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Place of publishing:Ljubljana
Publisher:T. Žgur
Year:2005
Number of pages:VII, 53 f.
PID:20.500.12556/RUL-156489 This link opens in a new window
UDC:004.93
COBISS.SI-ID:4695636 This link opens in a new window
Publication date in RUL:26.05.2024
Views:458
Downloads:71
Metadata:XML DC-XML DC-RDF
:
ŽGUR, Tadej, 2005, Detekcija položaja kroglice na igralniški ruleti s pomočjo računalniškega vida : diplomsko delo [online]. Bachelor’s thesis. Ljubljana : T. Žgur. [Accessed 11 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=156489
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Keywords:computer vision, edge detection, casino roulette, number detection on casino roulette, casinos

Similar documents

Similar works from RUL:
  1. Painting style transfer with deep neural networks
  2. Running trained deep neural networks on embedded systems
  3. Computer Speech Recognition in Slovene Language
  4. Using deep neural networks for differentiating automatically generated from manually written articles
  5. Sclera segmentation using deep neural networks
Similar works from other Slovenian collections:
  1. Deep reinforcement learning against human in playing video games
  2. Image-to-image translation through generative adversarial networks
  3. Confidence estimation in deep neural networks
  4. Zaznavanje sentimenta v novicah z globokimi nevronskimi mrežami
  5. Image style transfer using transfer learning and neural networks

Back