izpis_h1_title_alt

Lokalizacija mobilnega robota v kmetijskih medvrstnih prostorih
ID STEFANOV, ALEKSANDAR (Author), ID Mihelj, Matjaž (Mentor) More about this mentor... This link opens in a new window, ID Ovčak, Franci (Comentor)

.pdfPDF - Presentation file, Download (3,98 MB)
MD5: 65B45EBA81A3A09E76E05C51FFEE4FD7

Abstract
Kmetijstvo je sektor, ki se nenehno razvija v smeri bolj trajnostne prihodnosti in nenehno potrebuje dodatno delovno silo. Vendar pa je na podlagi statističnih podatkov iz zadnjih let mogoče opaziti trend pomanjkanja delovne sile v kmetijskem sektorju. Zato se vse več raziskav in razvoja usmerja v pametno, digitalizirano in robotizirano kmetijstvo. Velik del teh raziskav se osredotoča na vključevanje mobilnih robotov v različne vrste kmetijskih polj, saj lahko ti opravljajo različne naloge na različnih lokacijah na polju. V okviru tega magistrskega dela smo nadgradili obstoječo mobilno platformo z dodatno senzorsko opremo, da bi pridobili zbirko podatkov iz različnih kmetijskih okolij ter vključili in preizkusili nove pristope za lokalizacijo mobilnega robota. Zlasti smo se osredotočili na integracijo lokalizacije, ki temelji na podatkih 3D LiDAR senzorja. Vključili in primerjali smo nekaj najbolj znanih algoritmov za ocenjevanje odometrije na podlagi podatkov iz oblaka točk iz resničnega okolja. Delovanje algoritmov smo preizkusili v različnih kmetijskih scenarijih, da bi preverili robustnost algoritmov. Na začetku magistrskega dela smo na kratko predstavili področje kmetijske robotike in odometrije na podlagi 3D LiDAR senzorja. Nato smo predstavili mobilno platformo, uporabljeno med raziskavo, s strojnega vidika in pojasnili njeno kinematiko. V naslednjem poglavju razložimo nabor pridobljenih podatkov in predstavimo, katera okolja so bila zajeta in kateri senzorski podatki so bili pridobljeni. Na splošno smo pridobili podatke iz petih različnih okolij: sadovnjaka jablan, sadovnjaka sliv, špargljevega polja, okolje leske in zelenjadnice, gojene na PE-folijah. Kar zadeva podatke senzorjev, smo zajeli naslednje vrste podatkov: oblak točk, globinske slike, RGB slike, GNSS podatke in inercijske meritve. Namen nabora podatkov je, da bi bil uporaben za različne vrste raziskav na področju kmetijske robotike. Ker smo se osredotočili le na raziskave na področju lokalizacije na podlagi podatkov iz 3D LiDAR senzorja, smo uporabili le GNSS podatke in podatke v oblaku točk. V naslednjih poglavjih pojasnjujemo teorijo algoritmov, ki smo jih uporabili v naši raziskavi, in postopek njihove parametrizacije. V naši raziskavi smo uporabili štiri znane algoritme: RTAB-Map Scan-to-Scan (S2S), RTAB-Map Scan-to-Map (S2M), Keep-it-small-and-simple ICP (KISS-ICP) in LeGO-LOAM. Vsak od štirih algoritmov je bil preizkušen na podatkih iz sadovnjakov jablan in sliv ter v okolju leske. Uspešnost vsakega algoritma je bila ocenjena na podlagi znanih statističnih metrik, ki se uporabljajo na področju vrednotenja LiDAR odometrije. Vrednotenje je temeljilo na primerjavi dobljenih trajektorij z referenčno trajektorijo, pridobljeno iz GNSS podatkov. Da bi izboljšali lokalizacijo mobilnega robota in predlagali metodo lokalizacije, ki je robustna na različne podatke in okolja, smo vključili metodo združevanja senzorskih podatkov, pri kateri smo združili 3D LiDAR odometrijo skupaj s šumnimi GNSS meritvami z uporabo razširjenega Kalmanovega filtra. V razpravi naredimo podroben pregled rezultatov in pojasnjujemo obnašanje algoritmov v različnih okoljih.

Language:Slovenian
Keywords:mobilna robotika, lokalizacija, 3D LiDAR, Kalmanov filter, kmetijska robotika
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2024
PID:20.500.12556/RUL-156031 This link opens in a new window
COBISS.SI-ID:194238723 This link opens in a new window
Publication date in RUL:30.04.2024
Views:743
Downloads:164
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Localisation of a mobile robot in agricultural inter-row spaces
Abstract:
Agriculture is a sector that is constantly evolving towards a more sustainable future and is in constant need of additional labour. However, based on statistics from recent years, there is a trend towards labour shortages in the agricultural sector. As a result, more and more research and development is being carried out towards smart, digitalised and robotic agriculture. Much of this research is focused on integrating mobile robots into different types of agricultural fields, as they can perform different tasks in different locations in the fields. In the framework of this Master's thesis, we upgraded an existing mobile platform with additional sensor equipment to obtain a database from different agricultural environments and to integrate and test new approaches for the localisation of a mobile robot. In particular, we focused on the integration of localisation based on 3D LiDAR sensor data. We integrated and compared some of the most well-known algorithms for estimating odometry based on point cloud data on a real environment dataset that we acquired. We tested the performance of the algorithms in different agricultural scenarios to verify the robustness of the algorithms. At the beginning of the Master's thesis, we briefly introduced the field of agricultural robotics and odometry based on a 3D LiDAR sensor. We then present the mobile platform used during the research from a hardware point of view and explain its kinematics. In the next section, we explain the acquired dataset, presenting which environments were covered and what sensor data were captured. In general, we acquired data from five different environments: apple orchard, plum orchard, asparagus field, hazel orchard and ground vegetables grown on PE foils. In terms of sensor data, we captured data of the following types: point cloud, depth images, RGB images, GNSS data and inertial measurements. The purpose of the dataset is to be useful for different types of research in the field of agricultural robotics. As we only focused on research in the field of localisation based on 3D LiDAR data, we only used GNSS data and point cloud data. In the following chapters, we explain the theory of the algorithms we used in our research and the process of their parameterisation. In our study, we implemented four well-known algorithms: RTAB-Map Scan-to-Scan (S2S), RTAB-Map Scan-to-Map (S2M), Keep-it-small-and-simple ICP (KISS-ICP), and LeGO-LOAM. Each of the four algorithms was tested on apple and plum orchard data and in a hazelnut environment. The performance of each algorithm was evaluated based on known statistical metrics used in the field of LiDAR odometry evaluation. The evaluation was based on a comparison of the resulting trajectories with a reference trajectory derived from GNSS data. In order to improve the localisation of the mobile robot and to propose a localisation method that is robust to different data and environments, we included a sensor data fusion method where we combined 3D LiDAR odometry together with noisy GNSS measurements using Extended Kalman Filter. Discussion section provides a detailed overview of the results and explains the specific behaviour of the algorithms in different environments.

Keywords:mobile robotics, localisation, 3D LiDAR, Kalman filter, agricultural robotics

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back