Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Analiza podatkov o stečajnih postopkih
ID
ŠERUGA, DAVID
(
Author
),
ID
Žabkar, Jure
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(834,83 KB)
MD5: 7D195D7DAD993A9468EDE3B7F35BBD7F
Image galllery
Abstract
V tej diplomski nalogi se spoprimemo s problemom napovedovanja dolžin stečajnih postopkov v Sloveniji z uporabo različnih metod strojnega učenja. Imamo širok nabor podatkov o samih postopkih, od leta 2008 naprej in tudi podatke o podjetjih in posameznikih v postopkih. Začeli smo s pripravo podatkov na statistično analizo v kateri smo dobili dober vpogled v problem, ki je pred nami. Na koncu smo zaključili z napovedovanjem dolžin stečajnih postopkov, pri čemer smo ugotovili, da je model XGB naboljši pri napovedovanju z MAE 240 dni. Takoj za njim pa sta bila modela naključni gozd in gradient boost z MAE 243 dni.
Language:
Slovenian
Keywords:
analiza
,
podatkovno rudarjenje
,
strojno učenje
,
stačaj
,
stečajni postopek
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2024
PID:
20.500.12556/RUL-155971
COBISS.SI-ID:
189956099
Publication date in RUL:
25.04.2024
Views:
564
Downloads:
75
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ŠERUGA, DAVID, 2024,
Analiza podatkov o stečajnih postopkih
[online]. Bachelor’s thesis. [Accessed 19 May 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=155971
Copy citation
Share:
Secondary language
Language:
English
Title:
Analysis of data on bankruptcy proceedings
Abstract:
In this thesis, we deal with the problem of predicting the length of bankruptcy proceedings in Slovenia using different machine learning methods. We have a wide range of data on the proceedings themselves, from 2008 onwards, as well as data on companies and individuals in the proceedings. We started with the preparation of data for statistical analysis, in which we got a good insight into the problem in front of us. Finally, we ended up predicting the lengths of bankruptcy proceedings, finding that the XGBoost model was the best at predicting with MAE of 240 days. Immediately behind it were the random forest and gradient boost models with MAE of 243 days.
Keywords:
analysis
,
data mining
,
machine learning
,
bankruptcy
,
bankruptcy process
Similar documents
Similar works from RUL:
Searching for similar works...
Similar works from other Slovenian collections:
Back