izpis_h1_title_alt

Analiza podatkov o stečajnih postopkih
ID ŠERUGA, DAVID (Author), ID Žabkar, Jure (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (834,83 KB)
MD5: 7D195D7DAD993A9468EDE3B7F35BBD7F

Abstract
V tej diplomski nalogi se spoprimemo s problemom napovedovanja dolžin stečajnih postopkov v Sloveniji z uporabo različnih metod strojnega učenja. Imamo širok nabor podatkov o samih postopkih, od leta 2008 naprej in tudi podatke o podjetjih in posameznikih v postopkih. Začeli smo s pripravo podatkov na statistično analizo v kateri smo dobili dober vpogled v problem, ki je pred nami. Na koncu smo zaključili z napovedovanjem dolžin stečajnih postopkov, pri čemer smo ugotovili, da je model XGB naboljši pri napovedovanju z MAE 240 dni. Takoj za njim pa sta bila modela naključni gozd in gradient boost z MAE 243 dni.

Language:Slovenian
Keywords:analiza, podatkovno rudarjenje, strojno učenje, stačaj, stečajni postopek
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-155971 This link opens in a new window
COBISS.SI-ID:189956099 This link opens in a new window
Publication date in RUL:25.04.2024
Views:369
Downloads:57
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analysis of data on bankruptcy proceedings
Abstract:
In this thesis, we deal with the problem of predicting the length of bankruptcy proceedings in Slovenia using different machine learning methods. We have a wide range of data on the proceedings themselves, from 2008 onwards, as well as data on companies and individuals in the proceedings. We started with the preparation of data for statistical analysis, in which we got a good insight into the problem in front of us. Finally, we ended up predicting the lengths of bankruptcy proceedings, finding that the XGBoost model was the best at predicting with MAE of 240 days. Immediately behind it were the random forest and gradient boost models with MAE of 243 days.

Keywords:analysis, data mining, machine learning, bankruptcy, bankruptcy process

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back