izpis_h1_title_alt

Generiranje povzetkov tekem NBA na podlagi statističnih podatkov o tekmi
ID BARBO, MITJA (Author), ID Žabkar, Jure (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,33 MB)
MD5: 096A772B10DFABEAB72C1FC0856EAB16

Abstract
V preteklih letih se z porastjo javne uporabe umetne inteligence in njenih produktov vse bolj postavlja vprašanje, ali bo ljudi le ta v prihodnosti nadomestila in prevzela človekovo delo. ChatGPT je eden izmed teh produktov umetne inteligence in strojnega učenja. ChatGPT je pogovorni robot, učen na podatkih iz spleta do marca 2023, ki je prvič postal na voljo javnosti v novembru 2022. Spletna aplikacija ChatGPT-ja je postala spletna aplikacija, ki je najhitreje dosegla en miljon uporabnikov v zgodovini beleženja tega podatka in ob tem dosegla popularnost po celem svetu. Kmalu po javnem izidu ChatGPT-ja so uporabniki ugotovili potencial uporabe ChatGPT-ja in ga začeli uporabljati za nadomestitev dela. Tako smo tudi v naši diplomski nalogi prišli do raziskave, kjer smo preverili zmožnost ChatGPT-ja, da generira članke o tekmi lige NBA na podlagi izključno statističnih podatkov. Testirali smo tudi sam vpliv spremenljivke znotraj ChatGPT-ju podanega ukaza na generirane članke in kako se ti generirani članki razlikujejo med seboj in v primerjavi z realnimi članki. Definirali smo dva različna ukaza, v vsakem pa smo spreminjali vrednost druge spremenljivke. Ti dve spremenljivki smo poimenovali spremenljivka avtorja, ki je ChatGPT-ju sporočila vlogo novinarja, ki članek piše, in spremenljivko medijske hiše oz. delodajalca, ki je ChatGPT-ju sporočila, na kateri spletni strani se bo članek objavil. Generirane članke smo primerjali z več primerjavami, kot so gručenje, Vader test razpoloženja, LDA, Flesch-Kincaid testom berljivosti in kosinusno podobnostjo, iz katerih smo pridobili rezultate, ki nakazujejo, da ChatGPT trenutno ni zmožen generirati člankov podobnih tistim, ki so jih napisali profesionalni avtorji. Razlika med samimi spremenljivkami pa nam je pokazala manjši vpliv, kot smo pričakovali, vendar je pokazala, da je spremenljivka medijske hiše generirala boljše članke v primerjavi s spremenljivko avtorja.

Language:Slovenian
Keywords:ChatGPT, GPT, umetna inteligenca, strojno učenje, NBA, članki, generiranje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-155964 This link opens in a new window
COBISS.SI-ID:189887491 This link opens in a new window
Publication date in RUL:25.04.2024
Views:425
Downloads:62
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Generating articles of NBA games based on statistical data of the game
Abstract:
In the recent years rise of public usage of artificial intelligence and its products, the question, of whether artificial intelligence will replace and take over peoples work in the future has been raised more. ChatGPT is one of these products of artificial intellignece and machine learning. ChatGPT is a conversational robot, trained on data from the internet up until March 2023 and first became available to the public in November of 2022. ChatGPT's web aplication became the web application that reached 1 million users the fastest and with that worldwide popularity. Soon after ChatGPT's public release users figured out the potential usages of ChatGPT and began using it to replace work. This is how we came to our research that we will present in this thesis, where we checked the ability of ChatGPT to generate articles about NBA games, based solely on statistical data. We also tested the influence of variables within the commands given to ChatGPT for the generation of articles and how those generated articles compare to each other and to real articles. We defined two different commands, and in each we changed the value of a different variable. We named these two variables 'variable of the author', which communicates to ChatGPT the role of the journalist who writes the article, and the 'variable of the employer' of the author, which communicates to ChatGPT on which website the article will be published on. We compared the generated with multiple comparisons, such as clustering, Vader sentiment analysis, LDA, Flesch-Kincaid readability test and cosine similarity, from which we obtained the results that indicate that ChatGPT is currently unable to generate articles similar to those written by professional authors. The difference between the variables themselves, showed us a smaller impact than we expected, but still showed that the variable of the employer generated better articles, compared to the variable of the author.

Keywords:ChatGPT, GPT, artificial intelligence, machine learning, NBA, articles, generation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back