izpis_h1_title_alt

Sprotna strežba s k-strežniki v ravnini
ID VOLČJAK, DOMEN (Author), ID Hočevar, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (528,92 KB)
MD5: AEC3069F140186E8BF2C82E9734E6215

Abstract
Problem k-strežnikov obravnava dinamično dodeljevanje omejenega števila strežnikov za obdelavo zahtev v realnem času, pri čemer poskuša optimizirati premike strežnikov z namenom zmanjšanja skupne prepotovane razdalje. Ta računalniški izziv raziskuje strategije za učinkovito prilagajanje dinamičnim zahtevam, pri čemer se odločitve sprejemajo brez poznavanja prihodnjih zahtev. Cilj je razviti algoritme, ki dosegajo ravnotežje med odzivnostjo in optimalnostjo, ko so jim predstavljena nepredvidljiva zaporedja zahtev. Uspešnost algoritmov se preučuje s konkurenčnimi razmerji med sprotnimi algoritmi in optimalnim statičnim algoritmom. V okviru diplomskega dela sem implementiral (v pythonu) najbolj znane algoritme za reševanje problema k-strežnikov ter ocenil njihovo uspešnost. Za najuspešnejšega se je izkazal hitri algoritem delovne funkcije.

Language:Slovenian
Keywords:sprotni algoritmi, konkurenčna analiza, obdelava zahtev, optimizacija, python, pretoki v grafu, testiranje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-155936 This link opens in a new window
COBISS.SI-ID:189058819 This link opens in a new window
Publication date in RUL:24.04.2024
Views:387
Downloads:36
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The K-server problem in the plane
Abstract:
The k-server problem deals with the dynamic allocation of a limited number of servers to process requests in real-time, aiming to optimize server movements to reduce the overall traveled distance. This computational challenge explores strategies for efficiently adapting to dynamic demands, making decisions without knowledge of future requests. The goal is to develop algorithms that strike a balance between responsiveness and optimality when presented with unpredictable sequences of requests. Algorithm performance is evaluated through competitive ratios between online algorithms and an optimal static algorithm. In this thesis, I implemented (in Python) the most well-known algorithms for solving the k-server problem and assessed their effectiveness. The Fast Work Function algorithm proved to be the most successful.

Keywords:online algorithms, competitive analysis, request processing, optimization, Python, network flows, testing

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back