izpis_h1_title_alt

Prepoznavanje neželenih učinkov zdravil z iskalnikom po ključnih besedah v elektronski dokumentaciji bolnikov na Interni kliniki Univerzitetnega kliničnega centra Ljubljana
ID Bremšak, Petra (Author), ID Kerec Kos, Mojca (Mentor) More about this mentor... This link opens in a new window, ID Brvar, Miran (Comentor)

.pdfPDF - Presentation file, Download (1,37 MB)
MD5: 645B7DFF10DC2800B3F966DF7C3F80CD

Abstract
Nezeleni ucinki zdravil se pogosto pojavijo med zdravljenjem z zdravili in lahko vodijo v poslabsanje bolnikovega zdravstvenega stanja. NUZ predstavljajo vzrok za priblizno 5 odstotkov sprejemov v bolnisnico, poleg tega je ocenjeno, da 5 odstotkov hospitaliziranih bolnikov dozivi NUZ v bolnisnici. Uporaba elektronske zdravstvene dokumentacije in orodij za iskanje po kljucnih besedah lahko poenostavi in olajsa prepoznavanje NUZ in posledicno izboljsa klinicne izide pri bolnikih ter zmanjsa stroske zdravljenja. Namen raziskave je določiti obcutljivost, specificnost in pozitivno napovedno vrednost kljucnih besed, ki smo jih uporabili pri prepoznavanju NUZ iz elektronske dokumentacije bolnikov. Rocno smo pregledali elektronsko dokumentacijo 640 bolnikov, zdravljenih na sedmih klinicnih oddelkih Interne klinike Univerzitetnega klinicnega centra v Ljubljani v obdobju dveh mesecev, januar in februar 2023. Med njimi je 246 bolnikov imelo prisoten vsaj en NUZ. Skupno smo prepoznali 501 NUZ, od teh je bilo 154 zabelezenih ob sprejemu bolnika v ambulanto, 149 med hospitalizacijo bolnika, 138 je bilo predhodno znanih alergij in 60 je bilo drugih NUZ iz preteklosti. Prepoznavanje NUZ smo nato izvedli se s pomocjo iskalnika po kljucnih besedah v bolnisnicnem informacijskem programu in prepoznali 51 odstotkov NUZ. Kljucne besede so na splošno pokazale dobro specificnost, ki je bila pri vecini kljucnih besed vecja od 80 odstotkov. Po drugi strani pa je bila njihova obcutljivost precej slaba, kar pomeni, da je velik delez NUZ ostal neprepoznan.

Language:Slovenian
Keywords:nezeleni ucinki zdravil, kljucne besede, elektronska zdravstvena dokumentacija
Work type:Master's thesis/paper
Organization:FFA - Faculty of Pharmacy
Year:2024
PID:20.500.12556/RUL-155917 This link opens in a new window
Publication date in RUL:24.04.2024
Views:440
Downloads:66
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Recognition of adverse drug reactions using a keyword search tool in the electronic health records of patients hospitalised at the division of Internal medicine, University medical centre Ljubljana
Abstract:
Adverse drug reactions commonly occur during drug treatment and can lead to a deterioration in the patient's condition. In hospitals, ADRs account for about 5 percent of admissions. Furthermore, it is estimated that 5 percent of hospitalized patients experience ADRs. The use of electronic patient documentation and keyword search tools can simplify the identification of ADRs, ultimately improving clinical outcomes and reducing treatment costs. The aim of the study was to determine the sensitivity, specificity and positive predictive value of the keywords used for identifying ADRs from electronic patient records. We manually reviewed the electronic documentation of 640 patients treated at one of seven different clinical departments of the University Medical Centre in Ljubljana during a two-month period, January and February 2023. 246 of these patients had at least one ADR. A total of 501 ADRs were identified, of which 154 were recorded at the time of the admission, 149 during the patient's hospitalisation, 138 were previously known allergies, and 60 had a history of previous ADRs. Identification of ADRs was then performed using a keyword search tool, where 51.3 percent of the ADRs were identified. The keywords generally had good specificity, with majority of keywords having a specificity of more than 80 percent. However, their sensitivity was quite low, meaning that a large proportion of ADRs remained unrecognized.

Keywords:adverse drug reactions, keywords, electronic health record

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back