izpis_h1_title_alt

Virtualni osebni fitnes trener in prepoznavanje vadbene dejavnosti z uporabo umetne inteligence
ID Dimitrievska, Mihaela (Author), ID Logar, Vito (Mentor) More about this mentor... This link opens in a new window, ID Tomažič, Simon (Comentor)

.pdfPDF - Presentation file, Download (2,28 MB)
MD5: FBCEEF6173CC0ADBE1ADF7445745AB21

Abstract
Telesna pripravljenost je ključni vidik posameznikovega dobrega počutja, saj vpliva na kardiopulmonalno zmogljivost, kognitivne sposobnosti, preprečevanje debelosti in zmanjšanje tveganja za smrtnost. Ta diplomska naloga raziskuje prepoznavanje in sledenje vadbe v realnem času za izboljšanje vadbene izkušnje, saj zagotavlja takojšnje povratne informacije s prepoznavanjem in štetjem ponovitev. Ta pristop optimizira učinkovitost vadbe in zmanjša tveganje poškodb zaradi nepravilne drže ali tehnike, kar posameznike motivira, da premaknejo svoje meje, in izboljša zavzetost pri vadbi v fitnesu. Pametni telefoni in sledilniki telesne pripravljenosti sicer omogočajo sledenje dejavnosti, vendar pogosto težko zanesljivo prepoznajo različne vaje in povzročajo velike stroške. Zato je umetna inteligenca postala ključnega pomena in je prodrla v različne panoge, vključno s fitnesom. V tem kontekstu je postalo pomembno prepoznavanje položaja človeka, ki je ključni vidik raziskav računalniškega vida. V tem diplomskem delu sta predstavljeni dve metodi za prepoznavanje položaja telesa, YOLOv7 in MediaPipe, ter opravljena primerjalna analiza med njima na podlagi nazornih primerov. Nato se posvetimo izgradnji modela strojnega učenja za virtualni osebni fitnes sistem. Ta sistem ima sposobnost prepoznavanja vaj in štetja ponovitev v realnem času z uporabo kamere. Na osnovi primerjave modelov smo se odločili za model MediaPipe za ocenjevanje položaja, uporabljamo knjižnico MediaPipe za ekstrakcijo ključnih točk in zbiranje podatkov, medtem ko TensorFlow poganja vidik strojnega učenja. Natančneje, za razvoj celotnega modela uporabljamo rekurentne nevronske mreže, zlasti dolgotrajni kratkoročni spomin, v programskem okolju Python. Vrhunec tega dela predstavljajo prepričljivi statistični podatki, ki prikazujejo impresivno 100-odstotno uspešnost klasifikacije.

Language:Slovenian
Keywords:prepoznavanje položaja, umetna inteligenca, globoko učenje, strojno učenje, nevronske mreže, konvolucijske nevronske mreže, dolgoročni kratkoročni spomin, YOLOv7, MediaPipe
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FE - Faculty of Electrical Engineering
Year:2024
PID:20.500.12556/RUL-155608 This link opens in a new window
COBISS.SI-ID:191959555 This link opens in a new window
Publication date in RUL:08.04.2024
Views:623
Downloads:121
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Virtual personal trainer and gym workout recognition using artificial intelligence
Abstract:
Physical fitness is vital for overall well-being, impacting cardiovascular health, cognitive focus, obesity prevention, and mortality risk. This thesis explores real-time exercise recognition and tracking to enhance the workout experience, providing immediate feedback by recognizing and counting repetitions. This approach optimizes exercise effectiveness and reduces the risk of injury due to incorrect posture or technique, motivating individuals to push their limits and improve engagement with fitness routines. While smartphones and fitness trackers enable activity tracking, they often struggle to recognize various exercises reliably and incur significant costs. Consequently, artificial intelligence (AI) has become crucial, penetrating diverse industries, including fitness. Human pose estimation, a key aspect of computer vision research, has gained prominence in this context. This thesis introduces two pose estimation methods, YOLOv7 and MediaPipe, and conducts a comparative analysis between the two through illustrative examples. Following this, our attention turns to building a machine learning model for a virtual personal fitness system. This system possesses the capability to recognize exercises and count repetitions in real-time using a camera. Opting for the MediaPipe pose estimation model, we leverage the MediaPipe library for keypoint extraction and data collection, while TensorFlow powers the machine learning aspect. Specifically, we employ recurrent neural networks, particularly long short-term memory, within a Python software environment to develop the entire model. The culmination of this work presents compelling statistical data, showcasing an impressive 100% classification performance.

Keywords:pose estimation, artificial intelligence, deep learning, machine learning, neural networks, convolutional neural networks, long short-term memory, YOLOv7, MediaPipe

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back