izpis_h1_title_alt

Množice števil brez tričlenih aritmetičnih zaporedij : magistrsko delo
ID Bone, Barbara (Author), ID Jezernik, Urban (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,03 MB)
MD5: 4019D53C9A9345B1EF21B23EB2A53698

Abstract
V magistrskem delu predstavimo množice naravnih števil brez netrivialnih tričlenih aritmetičnih zaporedij, ki jih je motivirala domneva o prisotnosti k-členih aritmetičnih zaporedij v dovolj gostih množicah v naravnih številih. Najprej predstavimo algoritem iskanja množic brez treh števil, ki so enako narazen, in rezultate, ki smo jih dobili s poganjanjem programa. Spodnjo mejo za velikost množic brez tričlenih aritmetičnih zaporedij določimo z Behrendovo konstrukcijo. Za zgornjo mejo predstavimo najprej Meshulamov izrek, katerega dokaz je podoben dokazu Rothovega izreka. Oba izreka dokažemo s pomočjo diskretne Fourierove transformacije za primerne množice. V delu predstavimo tudi uporabo množic brez tričlenih aritmetičnih zaporedij za reševanje drugih problemov v matematiki. Zadnje poglavje posvetimo razreševanju prej omenjene domneve za štiri- in k-člena zaporedja v številih ter še aritmetičnim zaporedjem v praštevilih.

Language:Slovenian
Keywords:aritmetično zaporedje, Behrendova konstrukcija, diskrenta Fourierova transformacija, Meshulamov izrek, Rothov izrek
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-155586 This link opens in a new window
UDC:511
COBISS.SI-ID:191763459 This link opens in a new window
Publication date in RUL:07.04.2024
Views:719
Downloads:155
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Sets of integers without three-term arithmetic progressions
Abstract:
In this master's thesis, we present sets of natural numbers without three terms in an arithmetic progression, motivated by the conjecture about the presence of k-term arithmetic pogressions in sufficiently dense sets of natural numbers. First, we introduce an algorithm for finding examples of such sets and present the results obtained by running the program. We determine the lower bound for the size of sets without three-term arithmetic progressions using Behrend's construction. For the upper bound for the size of such sets, we first present Meshulam's theorem, whose proof is similar to the proof of Roth's theorem. Both theorems are proven using the discrete Fourier transformation for appropriate sets. The thesis also demonstrates the use of sets with no three terms in an arithmetic progression in solving other problems in mathematics. The final chapter is focused on resolving the mentioned conjecture for four-term and k-term arithmetic sequences in numbers and on primes that are equidistant from each other.

Keywords:arithmetic progression, Behrend's construction, discrete Fourier transformation, Meshulam's Theorem, Roth's Theroem

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back