izpis_h1_title_alt

Nevroevolucija za strojno učenje iz tabelaričnih podatkov
ID VREČEK, JURE (Author), ID Robnik Šikonja, Marko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,87 MB)
MD5: 363FF3D61E2489A70E697A95A351AAC9

Abstract
Diplomska naloga obsega izdelavo programa, ki implementira nevroevolucijo za izdelavo rekurenčnih nevronskih mrež za večrazredno klasifikacijo. Klasični pristopi k stojnem učenju se zanašajo na človeško načrtovanje topologije nevronskih mrež, naš program pa poleg prilagajanja uteži išče tudi najboljšo topologijo za dano podatkovno množico, pri čemer upošteva kompleksnost ustvarjenih mrež. Točnosti ustvarjenih mrež pri klasifikaciji podatkovnih množic z enakomerno porazdelitvijo razredov je primerljiva s pristopom naključnih gozdov, pri klasifikaciji množic z neenakomernimi porazdelitvami pa naša rešitev zaostaja.

Language:Slovenian
Keywords:nevroevolucija, strojno učenje, nevronske mreže, rekurenčne nevronske mreže, genetski algoritem
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-155350 This link opens in a new window
COBISS.SI-ID:191010563 This link opens in a new window
Publication date in RUL:27.03.2024
Views:537
Downloads:169
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Neuroevolution for machine learning from tabular data
Abstract:
In the thesis, we implement neuroevolution for the creation of recurrent neural networks for multiclass classification. Traditional approaches to machine learning rely on human-designed neural network topologies, while we also search for the suitable topology for the given dataset, considering the complexity of the networks. The accuracy of the created networks for classification of datasets with uniformly distributed classes is comparable to the random forests approach, but our solution is inferior in classification of datasets with non-uniform class distributions.

Keywords:neuroevolution, machine learning, neural networks, recurrent neural networks, genetic algorithm

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back