izpis_h1_title_alt

Odkrivanje globokih ponaredkov z video transformerji
ID LOGAR, TADEJ (Author), ID Peer, Peter (Mentor) More about this mentor... This link opens in a new window, ID Batagelj, Borut (Comentor)

.pdfPDF - Presentation file, Download (2,36 MB)
MD5: 1990B1994EE9487A5727044C49273AAE

Abstract
V diplomski nalogi se soočamo s problematiko odkrivanja lažnih posnetkov. Lažni posnetki se na spletu pojavljajo vse pogosteje in z uporabo tehnologije globokih ponaredkov (angl. Deepfakes) za ustvarjanje teh posnetkov postajajo tudi tako prepričljivi, da lahko pretentajo ljudi. Cilj globokih ponaredkov je velikokrat širjenje dezinformacij ali omadeževanje ugleda znane osebe. Za namen računalniškega prepoznavanja globokih ponaredkov predstavimo dva sorodna pristopa, ki temeljita na arhitekturi transformerjev in delujeta na osnovi posnetka, za razliko od drugih metod, ki delujejo na osnovi posameznih slik. Imenujeta se Video Vision Transformer (ViViT) in UniFormerV2. Modele teh pristopov smo naučili na podatkovnih zbirkah globokih ponaredkov FaceForensics++ in Celeb-DF-v2. Preizkusili smo tudi zmogljivost modelov na testnem naboru iz zbirke DFDC. S temi modeli smo dosegli rezultate, ki so primerljivi tudi z dosedaj najboljšimi na tem področju. V okviru diplomske naloge opišemo še našo metodologijo, tehnologijo uporabljenih modelov in podrobnosti implementacije. Predstavimo tudi podrobne rezultate, eksperimente ter primerjavo z drugačnimi pristopi pri odkrivanju globokih ponaredkov.

Language:Slovenian
Keywords:strojno učenje, globoko učenje, lažni posnetki, globoki ponaredki, Video Vision Transformer, UniFormerV2
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-155116 This link opens in a new window
COBISS.SI-ID:190633987 This link opens in a new window
Publication date in RUL:20.03.2024
Views:645
Downloads:159
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Deepfake Detection using Video Transformers
Abstract:
In this bachelor's thesis we examine the task of Deepfake detection. These fake videos are appearing online with increasing frequency. With the use of deep learning for their creation, they have become convincing enough to trick humans. The goal of creating these fake videos is often to spread misinformation or damage the reputations of celebrities. For this task of detecting fake videos, we present two related video-based approaches, with each using the transformer architecture. These approaches are known as the Video Vision Transformer (ViViT) and UniFormerV2. We trained models of these two approaches on two datasets of fake videos, FaceForensics++ and Celeb-DF-v2. We also tested the performance of these models on an additional test set of videos from the DFDC dataset. With the use of these models, we have achieved results comparable to state-of-the-art approaches in this field. As part of the thesis, we describe our methodology, the technologies used in the approaches, and certain implementation details. We also present detailed results of the models we trained, our experiments, and a comparison of our results with some of the different approaches to Deepfake detection.

Keywords:machine learning, deep learning, Deepfake detection, Video Vision Transformer, UniFormerV2

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back