izpis_h1_title_alt

How to compute the M-polynomial of (chemical) graphs
ID Deutsch, Emeric (Author), ID Klavžar, Sandi (Author), ID Romih, Gašper Domen (Author)

.pdfPDF - Presentation file, Download (376,13 KB)
MD5: 3A5B06CB7C71FF9D99E8D79ED6FD0E35
URLURL - Source URL, Visit https://match.pmf.kg.ac.rs/issues/m89n2/m89n2_275-285.html This link opens in a new window

Abstract
Let $G$ be a graph and let $m_{i,j}(G)$, $i,j\ge 1$, be the number of edges $uv$ of $G$ such that $\{d_v(G), d_u(G)\} = \{i,j\}$. The M-polynomial of $G$ is $M(G;x,y) = \sum_{i\le j} m_{i,j}(G)x^iy^j$. A general method for calculating the M-polynomials for arbitrary graph families is presented. The method is further developed for the case where the vertices of a graph have degrees $2$ and $p$, where $p\ge 3$, and further for such planar graphs. The method is illustrated on families of chemical graphs.

Language:English
Keywords:M-polynomial, chemical graph, planar graph
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2023
Number of pages:Str. 275-285
Numbering:Vol. 89, iss. 2
PID:20.500.12556/RUL-155059 This link opens in a new window
UDC:519.17:54
ISSN on article:0340-6253
DOI:10.46793/match.89-2.275D This link opens in a new window
COBISS.SI-ID:118666243 This link opens in a new window
Copyright:
Članek je objavljen v odprtodostopni reviji – glej spletno stran revije https://match.pmf.kg.ac.rs/. (Datum opombe: 12. 9. 2024)
Publication date in RUL:18.03.2024
Views:527
Downloads:35
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Match. communications in mathematical and in computer chemistry
Shortened title:Match
Publisher:University of Kragujevac, Faculty of Science
ISSN:0340-6253
COBISS.SI-ID:2624551 This link opens in a new window

Secondary language

Language:Slovenian
Keywords:M-polinom, kemijski graf, ravninski graf

Projects

Funder:ARRS - Slovenian Research Agency
Project number:P1-0297
Name:Teorija grafov

Funder:ARRS - Slovenian Research Agency
Project number:J1-2452
Name:Strukturni, optimizacijski in algoritmični problemi v geometrijskih in topoloških predstavitvah grafov

Funder:ARRS - Slovenian Research Agency
Project number:N1-0285
Name:Metrični problemi v grafih in hipergrafih

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back