izpis_h1_title_alt

Določanje slikovnega prostora umetniških slik s pomočjo računalniškega vida
ID Sterle, Rožle (Author), ID Solina, Franc (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (12,74 MB)
MD5: E0DBB9E0313745D325E86B6937593770

Abstract
V diplomski nalogi smo raziskovali, kako lahko s pomočjo računalniškega vida avtomatsko izluščimo informacijo o globini iz umetniških slik. Izdelani sta bili dve metodi, ki z različnimi principi računalniškega vida poskušata rekonstruirati tridimenzionalni prostor v umetninah. Prva metoda temelji na zaznavanju obrazov in matematičnih lastnostih perspektive. Druga metoda pa uporablja napredni model MiDaS, da iz umetnin generira globinske slike. Analiza je bila izvedena na 10484 slikah iz zbirke WikiArt. Narejena je bila tudi analiza rezultatov z različnimi algoritmi nenadzorovanega strojnega učenja in primerjava obeh metod, ki je pokazala, da je s svojimi mnogimi prednostmi boljša druga metoda.

Language:Slovenian
Keywords:računalniški vid, slikovni prostor, umetnost
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-154981 This link opens in a new window
COBISS.SI-ID:189277187 This link opens in a new window
Publication date in RUL:12.03.2024
Views:429
Downloads:71
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Determining the visual space of artistic paintings using computer vision
Abstract:
In the thesis, we explored how computer vision can be used to automatically extract depth information from artistic images. Two methods were developed, which use different computer vision principles to attempt to reconstruct three-dimensional space in artworks. The first method is based on the detection of faces and mathematical properties of perspective. The second method utilizes the advanced MiDaS model to generate depth images from artworks. The analysis was carried out on 10,484 images from the WikiArt collection. An analysis of the results was also made using various unsupervised machine learning algorithms. Comparison of both methods showed that the second method, with its many advantages, is better.

Keywords:computer vision, pictorial space, art

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back