Na razvijajočem se področju algoritmov za igranje iger ponuja Norišnica s ponovno postavitvijo osvojenih figur na šahovnico edinstven izziv, ki jo ločuje od tradicionalnega šaha. V magistrskem delu raziskujemo hibridni pristop, ki združuje domensko znanje z ocenami na osnovi nevronskih mrež, s ciljem doseči optimalno ravnovesje igralne moči. Z natančnimi poskusi, vključno s samo-igranjem, dvoboji z različico znanega programa, poskusi Go-deep in poskusi odstopanja ocen potez, predstavljamo prepričljive dokaze o učinkovitosti utežene vsote ocen tradicionalne ocenjevalne funkcije in nevronske mreže v slogu AlphaZero. Presenetljivo se je kombinacija 75 % ocene nevronske mreže in 25 % tradicionalne ocene dosledno izkazala za najučinkovitejšo izbiro v vseh naših poskusih. Poleg tega uvajamo uporabo odstotkov Best-Change, ki so velikokrat povezani s kakovostjo ocene, v kontekstu algoritmov na osnovi drevesnega preiskovanja Monte Carlo. Naš pristop bi se lahko uspešno uporabil tudi na drugih področjih, še posebej tistih, kjer se je uveljavljeno hevristično znanje izkazalo kot učinkovito. Poleg tega naš pristop predstavlja osnovo za morebitno razjasnitev igralnih odločitev na šahovnici - pomemben odmik od zapletenega odločanja nevronske mreže. Klasična ocenjevalna funkcija namreč ponuja človeku razumljivo domensko znanje in nudi potencial za razumljive igralne odločitve.
|