izpis_h1_title_alt

Kompaktiranje 400 kV nadzemnih vodov z vidika zmanjševanja vpliva prehodnih prenapetosti na izolaciji
ID PODKORITNIK, SIMON (Author), ID Papič, Igor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (18,73 MB)
MD5: 6F1B9BDDD47FC6AEE05BF2A1C44B1F23

Abstract
Tematika doktorske disertacije sega na področje prehodnih prenapetosti s strmim čelom in kompaktiranja 400 kV nadzemnih vodov za slovensko področje, kjer je zaenkrat to še neuporabljeno orodje. Kompaktiranje prinaša zmanjševanje glave (lahko tudi povečanje) stebra nadzemnega voda in posledično približevanje faznih vodnikov. To prinaša, še posebej na najvišjem prenosnem nivoju, takšne spremembe, ki lahko neposredno vplivajo na število preskokov na izolaciji nadzemnega voda, katerih vzrok so prehodne prenapetosti. Te şmo razvrstili na tiste, ki jih ponazarjajo stikalne prenapetosti in atmosferske razelektritve ter so ključne pri obravnavi 400 kV izolacijskega nivoja. Na podlagi minimalnih dozemnih in medfaznih razdalj smo s stališča vzdržnih napetosti preverili razdalje in geometrijo iskrišča dvosistemskega kompaktiranega nadzemnega voda v izvedbi s podpornimi izolatorji. Pri obravnavi prehodnih prenapetosti s strmim čelom, ki lahko privedejo do porušitve izolacije in preskokov, smo namenili posebno pozornost udaru strele kot osrednjemu dejavniku. Tu je treba za vsako področje, kamor se nadzemni vod vključuje, preveriti bistvene parametre amplitude toka strele, pogostost pojavljanja in obliko tokovnega udara. Da smo lahko parametre analizirali, je bilo treba uporabiti razvite napredne sisteme za lokalizacijo atmosferskih razelektritev (v Sloveniji sistem SCALAR). S tem nam je bil omogočen vpogled v klasifikacijo atmosferskih razelektritev in možnost določitve časov trajanja samega pojava s ključnimi podatki o lastnostih strel, ki so potrebni za analize zanesljivosti obratovanja ob uporabi koordinacije izolacije. Udari strel v nadzemni vod se lahko zaključijo na tri načine, vendar sta le dva izrazita in ju moramo upoštevati v primeru neposrednega udara v fazni vodnik ali v zaščitno vrv. Zato smo analizirali različne pristope zaključevanja udarov strel v objekte, saj ti definirajo izpostavljenost objekta neposrednemu udaru. Določanje obnašanja nadzemnega voda pod vplivom zunanjih dejavnikov sloni na elektrogeometrijskih modelih, ki so analitična orodja, s katerimi smo raziskovali možnosti za udare strel v nadzemni vod. Modeli temeljijo na pojmu udarna razdalja. Lider, ki napreduje iz oblaka proti zemlji, se mora s konico približati objektu na zemlji na neko kritično razdaljo (udarno razdaljo), ki je potrebna, da pride do končnega preskoka in povratnega udara toka. Zaradi udarov strel in prenapetosti se potencial spreminja tako na strani vodnikov kot tudi na stebru nadzemnega voda, ki v normalnih razmerah ni pod napetostjo, pač pa je ozemljen. Izolator mora zato vzdržati prenapetosti, ki so posledica potencialnih razlik med obema. Kadar je vzdržna napetost izolacije prekoračena, pride do preskoka. Kompozitni izolatorji, ki se jih uporablja pri kompaktiranih vodih, zlahka vzdržijo napetostne obremenitve znotraj materiala, se pa zato preskok zgodi zaradi razelektritve ob zunanji strani, po površini ali nad izolatorjem v zraku. V vlažnih pogojih in predvsem v primeru onesnažene površine izolatorja se lahko oblok pojavi po površini, vendar to ne velja za prehodne prenapetosti, ampak za časne, ki pa niso problematične za ta napetostni nivo in smo jih zato dokazano izločili iz obravnave. To izhaja iz dejstva, da je zaradi direktne ozemljene nevtralne točke transformatorjev faktor zemeljskega stika najnižji od vseh napetostnih nivojev prenosnih sistemov pri nas. Zaradi zniževanja električnega polja in navideznega podaljšanja iskrišča na izolaciji za omejevanje prenapetosti in odmikanja obloka v primeru preskokov stran od izolatorja (termične obremenitve) imamo običajno na izolatorjih nameščene zaščitne obroče z rogljiči. Ker je preskočna razdalja med elektrodama rogljičev najmanjša, je vmes električno polje najmočnejše in zaradi tega pride do preskoka na tem mestu. Zato je potrebno pri analizah prenapetosti na izolaciji ustrezno modeliranje iskrišča. Tu smo preverili različne modele, ki takšna iskrišča opisujejo, med njimi najbolj ključni model, ki temelji na U-t karakteristiki preskoka, model integralnih metod in fizikalne modele. Slednjim smo namenili kar nekaj pozornosti, saj upoštevajo vse tri stopnje razvoja razelektritve, od pojava korone, razvoja strimerjev, do končnega liderja in preskoka. Pomemben parameter, ki smo ga morali obravnavati, so tudi valovne impedance voda in sklopni faktor. Slednji vpliva na velikost inducirane napetosti v vodnikih, ko pride do udara strele v zaščitno (ozemljeno) vrv, in je povezan z geometrijo razdalj med vodniki. Impedanca nadzemnega voda pa definira, kako se bo prenapetostni val preoblikoval, omejil ali ojačal. Pri tem nismo pozabili na pomembno vlogo specifične upornosti zemlje in ozemljitvene upornosti stebra, ki sta drug z drugim neodtujljivo povezana in skrbita za odvajanje elektrine v zemljo. Pri modeliranju iskrišča je več pristopov, ki jih lahko uporabimo. Prvi je statični (poenostavljen) in drugi dinamični model ozemljila. Ta je pomemben in naprednejši, saj upošteva proces ionizacije zemlje, ki je odvisna od specifične upornosti zemljine in bolje ponazarja razmere v primeru odvajanja elektrine v zemljo. Obstaja veliko postopkov za izvedbo analiz prenapetosti, a je pri tem smiselno imeti tudi takšnega, ki bi bil za slovenske razmere najprimernejši. V ta namen smo zato izdelali poenostavljen postopek, kjer smo združili določene modele in predstavili kako s tem omogoča dober vpogled v zanesljivost nadzemnega voda oziroma izpostavljenost prehodnim prenapetostim s strmim čelom. Simulacije in uporaba naprednih metod omogočajo sicer dober vpogled zanesljivosti navidezne izolacije, a preskusi so tisti, ki potrjujejo in dokazujejo realne razmere na vodu. V ta namen smo skonstruirali prototip kompaktirane izolatorske verige in uporabili tako standardne kot nestandardne pristope k preskušanju. Želeli smo se približati obliki udarnega vala, katerega analizo opravimo preko neposrednega opazovanja udarov strel (SCALAR). Prav tako smo namenili pozornost pojavljanju korone, ki predstavlja proces ionizacije zraka v okolici kovinskega spončnega materiala in vodnikov pri visoki napetosti. V grobem lahko pojav korone pri izmenični napetosti razdelimo na pozitivno in negativno polperiodo, ker se pojavi ionizacije odvijajo v nanosekundnem področju. Ta pojav povzroča več posledic, ena glavnih je pojav radiointerferenčne motnje, ki jo merimo (RIV − radiointerferenčna napetost), in hrup na vodu. Zvočna širokopasovna komponenta korone nastane kot posledica mikrorazelektritev na površini kovinskih delov, kadar je vrednost električnega polja na dani lokaciji manjša od kritične. Poleg RIV merimo še same delne razelektritve oziroma tokovne »pulze«, ki se dogajajo v zraku in jih moramo omejiti. Optimizacija izolatorske verige je zelo pomembna in jo lahko izvajamo na več načinov. Ena izmed zelo uporabnih za naš primer je optimizacija iskrišča s spreminjanjem geometrije. S tem lahko neposredno vplivamo na navidezno podaljšanje izolatorske verige in posledično zvišanje kritične poljske jakosti. Tako dobimo optimalno obliko 400 kV kompaktirane izolatorske verige.

Language:Slovenian
Keywords:nadzemni vod, atmosferske razelektritve, kompaktiranje, prenapetosti, koordinacija izolacije, preskušanje, simulacije.
Work type:Doctoral dissertation
Organization:FE - Faculty of Electrical Engineering
Year:2024
PID:20.500.12556/RUL-154829 This link opens in a new window
COBISS.SI-ID:189427459 This link opens in a new window
Publication date in RUL:05.03.2024
Views:866
Downloads:120
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Compaction of 400 kV Overhead Transmission Lines with Regard to Reduction of Transient Overvoltages on Insulation
Abstract:
The subject of the doctoral dissertation extends to the field of transient overvoltages with steep fronts and compactions of 400 kV overhead lines for the Slovenian area, where, as of now, this is an unused tool. Compacting reduces the tower head (or increases it, depending on the purpose) of the overhead line tower and consequently brings the phase conductors closer. This introduces changes, especially at the highest volage levels, that can directly impact the number of insulator flashovers on the overhead line, caused by transient overvoltages. These are categorized into those caused by switching overvoltages and atmospheric discharges, which are crucial in addressing the 400 kV insulation level. Based on minimal clearances and interphase distances, it is necessary, from the standpoint of withstand voltages, to verify the distances and geometry of the flashover of the double-circuit compacted overhead line with supporting insulators. Regarding transient overvoltages with steep fronts, which can lead to insulation breakdowns and flashovers, special attention was given to lightning strikes as the central factor. For each area where the overhead line is incorporated, it is essential to verify key parameters such as lightning current amplitude, frequency of occurrence, and current waveform. To analyse these parameters, advanced systems for the localization of atmospheric discharges were used, such as the SCALAR system in Slovenia. This provided insight into the classification of atmospheric discharges and the ability to determine the duration of the phenomenon itself, with key data on lightning characteristics needed for insulation coordination analyses. Lightning strikes on the overhead line can conclude in three ways, but only two are prominent and must be considered: in the case of a direct strike on a phase conductor or on a shield wire. Therefore, various approaches to concluding lightning strikes on objects were analysed, as they define the object's exposure to direct strikes. The behaviour of the overhead line under the influence of external factors is based on electrogeometric models, analytical tools used to explore lightning strike possibilities. These models rely on the concept of a striking distance. The leader advancing from the cloud towards the ground must approach an object on the ground to a critical distance (striking distance) necessary for the final breakdown and return stroke. Due to lightning strikes and overvoltages, the potential changes both on the conductor side and on the overhead line tower, which is normally unenergized but grounded. Thus, the insulator must withstand overvoltages resulting from potential differences between them. When the withstand voltage of the insulation is exceeded, a flashover occurs. Composite insulators used in compacted lines easily withstand voltage stresses within the material. However, a flashover occurs due to surface flashover on the outer side, along the surface or above the insulator. In moist conditions, especially on a contaminated insulator surface, an arc can form along the surface. This is not relevant for transient overvoltages but power frequency overvoltages that are not problematic for this voltage level and are therefore excluded from consideration. This is due to the fact that the grounding factor for the neutral point of transformers is the lowest among all voltage levels in our transmission systems. To mitigate overvoltages and arc movement away from the insulator (thermal loads), protective rings with horns are usually installed on the insulators. Since the spark gap distance between the horns is the smallest, the electric field is the strongest, and this is where a flashover occurs. Therefore, when analyzing insulation overvoltages, appropriate sparkover modelling is required. Different models describing such sparkovers were evaluated, including the key model based on the U-t characteristic of flashover, integral methods, and physical models. The latter received significant attention as it considers all three stages of discharge development, from corona inception, streamer development, to final leader formation and flashover. An important parameter that needed to be addressed is the wave impedance of the conductors and the coupling factor. The latter affects the induced voltage magnitude in the conductors when lightning strikes a shielding wire and is related to the geometry of distances between conductors. The impedance of the overhead line defines how the overvoltage wave will be reshaped, limited, or amplified. In this context, the significant role of soil resistivity and the grounding resistance of the tower is not forgotten, as they are inherently linked and ensure the dissipation of electric charges into the ground. There are multiple approaches to performing overvoltage analyses, but it is meaningful to have one that is most suitable for Slovenian conditions. To this end, a simplified procedure was developed that provides insight into the reliability of the overhead line or exposure to transient overvoltages with steep fronts. Simulations and the use of advanced methods provide a good insight into the reliability of apparent insulation. However, tests are what confirm and demonstrate real conditions on the line. For this purpose, a prototype of a compacted insulator set was constructed, and both standard and non-standard testing approaches were used. The goal was to approximate the shape of the lightning impulse waveform, which was analysed through direct observations of lightning strikes (SCALAR). Attention was also given to corona discharge, which represents the ionization process of air surrounding metallic fitings of insulators and conductors at high voltage. In general, corona phenomena in AC voltage can be divided into positive and negative half-periods, as ionization events occur in the nanosecond range. This phenomenon has several consequences, one of the main ones being radio interference disturbances, which are measured (RIV - radio interference voltage), and noise on the line. The wideband sound component of corona arises due to micro discharges on the surface of metallic parts when the electric field value at a given location is less than the critical value. Besides RIV, partial discharges or current "pulses" occurring in the air are also measured, and they must be limited. Optimizing the insulator set is crucial and can be done in several ways. One of the most useful approaches for our case is optimizing spark gap by changing geometry. This directly affects the apparent extension of the insulator chain and consequently raises the critical field strength, resulting in an optimal shape for the 400 kV compacted insulator set.

Keywords:overhead line, atmospheric discharges, compacting, overvoltages, insulation coordination, testing, simulations

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back