izpis_h1_title_alt

Implementacija računalniškega vida za modernizacijo proizvodnje
ID ŽUKOVEC, DOMEN (Author), ID Jurišić, Aleksandar (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (734,34 KB)
MD5: FD0C00CC24ADCA92700A817A13F3C6BC

Abstract
Diplomsko delo raziskuje uporabo računalniškega vida v industriji, s posebnim fokusom na konvolucijskih nevronskih mrežah (CNN). V uvodu obravnava zgodovino in trenutne trende na teh področjih. Podrobno preučuje izzive in procese učenja nevronskih mrež za industrijski računalniški vid, vključno z metodologijo učenja, ocenjevanjem modelov, arhitekturo mrež, njihovimi rezultati in praktično implementacijo. Nadalje je predstavljen razvoj in implementacija modela računalniškega vida v industrijskem okolju. To vključuje zbiranje in obdelavo slikovnih podatkov, modeliranje, označevanje, učenje, optimizacijo, razvoj API-ja, integracijske točke, dokumentacijo in usposabljanje. Analizira in primerja tudi različne pristope in orodja za učenje modelov računalniškega vida, kot so Microsoft Custom Vision, Roboflow in YOLO ter se osredotoča na pomen zajema, označevanja in obdelave podatkov za uspeh računalniškega vida.

Language:Slovenian
Keywords:računalniški vid, umetna inteligenca, konvolucijske nevronske mreže, industrijska avtomatizacija, označevanje podatkov, modeliranje in optimizacija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-154822 This link opens in a new window
COBISS.SI-ID:188004867 This link opens in a new window
Publication date in RUL:04.03.2024
Views:714
Downloads:74
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Implementation of computer vision for production modernization
Abstract:
The thesis explores the use of computer vision in the industry, with a special focus on convolutional neural networks (CNN). In the introduction, it discusses the history and current trends in these areas. The work examines in detail the challenges and processes of learning neural networks for industrial computer vision, including the methodology of learning, model evaluation, network architecture, their results, and practical implementation. Furthermore, the development and implementation of a computer vision model in an industrial environment are presented. This includes the collection and processing of image data, modeling, labeling, learning, optimization, API development, integration points, documentation, and training. The thesis also analyzes and compares different approaches and tools for learning computer vision models, such as Microsoft Custom Vision, Roboflow, and YOLO, and focuses on the importance of data capture, labeling, and processing for the success of computer vision.

Keywords:Computer Vision, Artificial Intelligence, Convolutional Neural Networks, Industrial Automation, Data Annotation, Modeling and Optimization

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back