izpis_h1_title_alt

Sistem za izvajanje svetlobnih scenarijev na zaletišču smučarske skakalnice
ID MAROLT, MIHA (Author), ID Humar, Iztok (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,26 MB)
MD5: 5EF861BE60DDAD3BFE7BEFC7A08383E3

Abstract
Danes lahko sodobne smučarske skakalnice obravnavamo kot visoko tehnološke objekte, saj so na njih vgrajene številne visokotehnološke naprave, ki omogočajo nemoten potek tekmovanj. Med najpomembnejše naprave sodobe smučarske skakalnice tako spadajo: hlajena zaletna smučina, hladilni agregati, sistemi namakanja, sistemi zasneževanja, vitli za premikanje tovora in naprav po skakalnici, razsvetljava, veterne zavese, naprave za projekcijo vetra in še bi lahko naštevali. Vse omenjene naprave so namenjene izključno omogočanju izvedbe tekmovanj in treningov, kar je tudi primarni namen skakalnice. Nobena od naštetih naprav ne vključuje marketinga, trženja infrastrukture, promocije tekmovanj ali animiranja publike. V želji po zapolnitvi omenjene praznine smo skupaj s podjetjem, ki razvija in proizvaja tehnično opremo za smučarske skakalnice, začeli razvijati sistem osvetljene smučine, ki bi se lahko vgradil v obstoječo ledeno keramično smučino brez poseganja v njene konstrukcijske lastnosti. Najprej smo z naročnikom definirali željene funkcionalnosti sistema, predvideli smo sistem, ki bi lahko deloval v treh načinih. Prvi način je način tekmovanja oz. scenarij tekmovanja. Željeno je, da v tem načinu sistem osvetljene smučine komunicira s sistemom vodenja tekmovanja, smučino obarva skladno s semaforjem žirije in za temovalci proži belo sled. Na trgu obstajajo trije ponudniki sistema vodenja tekmovanja, naš cilj je bil, da naš sistem uspešno integriramo z vsemi ponudniki sistemov vodenja tekmovanja. Drugi način oziroma scenarij uporabe sistema osvetljene smučine je zabavni način. Ta bi se uporabljal v času, ko na skakalnici ne poteka tekmovanje, ampak med daljšimi premori, prekinitvami med posameznimi serijami skokov, pred in po tekmi in pri ostalih prireditvah v izteku skakalnice, ki niso nujno povezane s skakalnim športom. Koncept tega načina je prižiganje in ugašanje svetlobnih teles, vgrajenih v smučino in spreminjanje in prelivanje barv po v naprej določenem scenariju. Pri tretjem načinu delovanja smo želeli realizirati vizualizaclijo glasbe, pri kateri bi sistem lahko preko povezave DMX krmilili skupaj z ostalimi svetlobnimi elementi na skakalnici. Drugo možnost povezave pa ponuja avdio vhod, kamor bi lahko priklopili glasbeni signal, ki bi ga sistem nato obdelal in v naslednjem koraku realiziral enega od modelov vizualizacije glasbe, na primer VU-meter, beat detektor ali spektralni analizator. ii V naslednjem koraku smo natančno preučili možnost vgradnje sistema v obstoječo ledno keramično smučino in delovno oklje sistema. Oboje nam je predstavljalo številne izzive, obstoječa konstrukcija namreč dopušča vgradnjo svetlobnih teles sistema le v ozek kanal na sredini smučine, obenem pa dolžina zaletne smučine pogosto presega 100 m. Delovno okolje sistema se je prav tako izkazalo za izjemno zahtevno, sistem osvetljene smučine je namreč po vgradnji izpostavljen temperaturni razliki od −−30°C do 40°C, stalni prisotnosti vlage in neposrednemu sončnemu sevanju. Sledil je izbor gradnikov sistema, pri katerem smo morali skrbno upoštevati vsako izmed zgornjih ugotovitev. Najprej smo pripravili zasnovo arhitekture sistema, kjer smo definirali gradnike sistema. Sistem smo zasnovali okoli glavnega krmilnika, ki mu samostojen komunacijski prehod (angl. gateway) zagotavlja povezljivost, dodali smo komuniakcijske module, ki omogočajo komunikacijo med glavnim krmilnikom in LED trakovi na velikih razdaljah. Nato je bilo potrebno na trgu poiskati gradnike sistema, ki s svojimi karakteristikami lahko izpolnijo definirane zahteve, tako programske kot tudi mehanske, torej zmožnost delovanja v obravnavanem delovnem okolju. Sledilo je obsežno testiranje vzpostavljenega sistema, pri tem koraku smo v laboratoriju simulirali razmnere, podobne razmeram v realnem delovnem okolju sistema in analizirali njegov odziv. V zadnjem koraku je bilo potrebno zasnovati še krmiljenje sistema. Želja je bila, da se krmiljenje sistema osvetljene smučine vključi v že obstoječo aplikacijo, preko katere je možno nadzirati tudi nekatere druge elemente. Za uspešno realizacijo je bilo potrebno vzpostaviti nov programski in grafični vmesnik, ki pa v začetni fazi ni deloval povsem zanesljivo. Zato smo dodatno omogočili dostop do nadzora sistema preko poenostavljenega uporabniškega vmesnika preko HTTP povezave. Kasneje se je izkazalo še, da naročnik pogosto ni sposoben zagotoviti povezave z omrežjem, zato smo predvideli še upravljanje brez povezave, preko zaslona z vrtljivim gumbom. Po končanem razvoju sistema osvetljene smučine smo z njim uspešno nadgradili štiri smučarske skakalnice, med njimi so tudi skakalnice v Pekingu, ki so leta 2022 gostile zimske olimpijske igre. Na omenjenih objektih sistem deluje skladno s pričakovanji, zato lahko proces razvoja označimo za uspešnega.

Language:Slovenian
Keywords:smučarski skoki, zaletna smučina, LED trakovi, protokol SPI, protokol MQTT
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2024
PID:20.500.12556/RUL-154790 This link opens in a new window
COBISS.SI-ID:189415939 This link opens in a new window
Publication date in RUL:01.03.2024
Views:624
Downloads:74
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:System for lightning scenarios at the in-run area of ski jumping hill
Abstract:
Today, modern ski jumping hills can be considered high-tech facility, as they incorporate numerous high-tech devices that ensure the smooth running of competitions. Among the most important devices of a modern ski jumping hill are: a cooled in-run track, cooling units, irrigation systems, snowmaking systems, winches for moving cargo and equipment along the jump, lighting, wind screens, wind projection devices, and more could be listed. All mentioned devices are intended exclusively for enabling the execution of competitions and training, which is also the primary purpose of the ski jump. None of the listed devices include marketing, infrastructure marketing, competition promotion, or audience animation. In an effort to fill this gap, we started developing a system of illuminated ski tracks that could be installed in the existing ice-ceramic ski track without affecting its structural properties, in collaboration with a company that develops and manufactures technical equipment for ski jumps. First, we defined the desired functionalities of the system with the client. We envisioned a system that could operate in three modes. The first mode is competition mode or competition scenario. It is desired that in this mode, the system of illuminated ski tracks communicates with the competition management system, colors the track in accordance with the jury's semaphore, and triggers a white trail for the followers. There are three providers of competition management systems on the market, and our goal was to successfully integrate our system with all providers of competition management systems. The second mode or scenario of using the illuminated ski track system is the entertainment mode. This would be used when there is no competition taking place on the ski jump, but during longer breaks, interruptions between individual series of jumps, before and after the match, and at other events in the ski jump's outrun that are not necessarily related to ski jumping. The concept of this mode is turning on and off the light bodies installed in the track and changing and blending colors according to a predetermined scenario. For the third mode of operation, we wanted to realize music visualization, where the system could be controlled together with other lighting elements on the ski jump via a DMX connection. Another connection option offers an audio input, where a musical signal could be connected, which the system would then process and in the next step realize one of the music visualization models, such as a VU meter, beat detector, or spectral analyzer. vi In the next step, we carefully examined the possibility of installing the system in the existing ice-ceramic ski track and the system's working environment. Both presented numerous challenges, as the existing construction only allows the installation of the system's light bodies in a narrow channel in the middle of the ski track, while the length of the in-run track often exceeds 100 meters. The working environment of the system also proved to be extremely demanding, as the illuminated ski track system is exposed to temperature differences from −−30°C to 40°C, constant moisture presence, and direct sunlight after installation. The selection of system components followed, during which we had to carefully consider each of the above findings. First, we prepared a system architecture design, where we defined the components of the system. The system was designed around a main controller, which is provided connectivity by a standalone communication gateway, and we added communication modules that enable communication between the main controller and LED strips over long distances. Then, it was necessary to find system components on the market that, with their characteristics, can meet the defined requirements, both software and mechanical, i.e., the ability to operate in the considered working environment. This was followed by extensive testing of the established system, where we simulated conditions similar to the real working environment of the system in the laboratory and analyzed its response. The final step was to design the control of the system. The desire was to integrate the control of the illuminated ski track system into an existing application, through which other elements could also be controlled. For successful realization, it was necessary to establish a new software and graphical interface, which initially did not operate entirely reliably. Therefore, we additionally enabled access to the system control via a simplified user interface through an HTTP connection. Later, it turned out that the client often could not ensure a network connection, so we also envisioned offline management, via a screen with a rotary knob. After completing the development of the illuminated ski track system, we successfully upgraded four ski jumps, including the jumps in Beijing, which hosted the Winter Olympics in 2022. The system operates in accordance with expectations on these objects, so we can mark the development process as successful.

Keywords:ski jumps, in-run track, LED strips, SPI protocol, MQTT protocol

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back