izpis_h1_title_alt

Complete nonsingular holomorphic foliations on Stein manifolds
ID Alarcón, Antonio (Author), ID Forstnerič, Franc (Author)

URLURL - Source URL, Visit https://link.springer.com/article/10.1007/s00009-023-02566-0 This link opens in a new window
.pdfPDF - Presentation file, Download (425,16 KB)
MD5: 3F254FFCC705A3878A64CAA160F3FD19

Abstract
Let $X$ be a Stein manifold of complex dimension $n \ge 1$ endowed with a Riemannian metric ${\mathfrak g}$. We show that for every integer $k$ with $\left[\frac{n}{2}\right] \le k \le n-1$ there is a nonsingular holomorphic foliation of dimension $k$ on $X$ all of whose leaves are topologically closed and ${\mathfrak g}$-complete. The same is true if $1\le k \left[\frac{n}{2}\right]$ provided that there is a complex vector bundle epimorphism $TX\to X \times \mathbb{C}^{n-k}$. We also show that if $\mathcal{F}$ is a proper holomorphic foliation on $\mathbb{C}^n$ $(n > 1)$ then for any Riemannian metric ${\mathfrak g}$ on $\mathbb{C}^n$ there is a holomorphic automorphism $\Phi$ of $\mathbb{C}^n$ such that the image foliation $\Phi_*\mathcal{F}$ is ${\mathfrak g}$-complete. The analogous result is obtained on every Stein manifold with Varolin's density property.

Language:English
Keywords:Stein manifolds, complete holomorphic foliations, density property
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Publication date:01.01.2024
Year:2024
Number of pages:16 str.
Numbering:Vol. 21, iss. 1, article no. 25
PID:20.500.12556/RUL-154509 This link opens in a new window
UDC:517.5
ISSN on article:1660-5446
DOI:10.1007/s00009-023-02566-0 This link opens in a new window
COBISS.SI-ID:183749123 This link opens in a new window
Publication date in RUL:19.02.2024
Views:568
Downloads:32
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Mediterranean journal of mathematics
Shortened title:Mediterr. j. math.
Publisher:Springer Nature
ISSN:1660-5446
COBISS.SI-ID:13561433 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:Steinove mnogoterosti, kompletne holomorfne foliacije, lastnost gostote

Projects

Funder:EC - European Commission
Funding programme:European Commission
Project number:101053085
Name:Holomorphic Partial Differential Relations
Acronym:HPDR

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:P1-0291-2022
Name:Analiza in geometrija

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:J1-3005-2021
Name:Kompleksna in geometrijska analiza

Funder:ARRS - Slovenian Research Agency
Funding programme:Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Project number:N1-0237-2022
Name:Holomorfne parcialne diferencialne relacije

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back