Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Interpolacija odsevnih sond za hitro upodabljanje odsevnih materialov
ID
Gojković, Katarina
(
Author
),
ID
Marolt, Matija
(
Mentor
)
More about this mentor...
,
ID
Lesar, Žiga
(
Comentor
)
PDF - Presentation file,
Download
(11,58 MB)
MD5: 68D46303E6D503C3FE6EE300F4FBB5BB
Image galllery
Abstract
Diplomsko delo obravnava problem upodabljanja odsevnih materialov v računalniški grafiki. Za reševanje tega problema smo razvili konvolucijski nevronski mreži, katerih cilj je bil ustvariti čim boljše slike okolice v določeni točki v sceni. Oba pristopa temeljita na pojavu prekomernega prilagajanja, zaradi česar smo morali vsako mrežo individualno učiti za specifične scene. Prva mreža je oblikovana tako, da na vhodu prejme x, y in z koordinate v sceni ter na izhodu generira sliko okolice v tej točki. Pri drugem pristopu pa smo sceno razdelili s triangulacijo in zajeli slike okolice v vseh ogliščih trikotnikov. Tako druga mreža na vhodu prejme tri slike okolice (zajete v ogliščih trikotnika) in uteži, ki odražajo oddaljenost točke v prostoru od teh oglišč, na izhodu pa poda napoved slike okolice v določeni točki v prostoru. Oba pristopa uspešno napovedujeta slike okolice v želenih točkah v prostoru, tudi če te niso bile del učne množice, vendar je njihova natančnost odvisna od kompleksnosti same scene. Obe metodi rešujeta problem ostrih prehodov med odsevnimi sondami ob premikanju po sceni in sta primerni za upodabljanje odsevov na premikajočih se objektih.
Language:
Slovenian
Keywords:
računalniška grafika
,
odsevne sonde
,
interpolacija
,
konvolucijske nevronske mreže
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2024
PID:
20.500.12556/RUL-154363
COBISS.SI-ID:
184620291
Publication date in RUL:
09.02.2024
Views:
1060
Downloads:
95
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
GOJKOVIĆ, Katarina, 2024,
Interpolacija odsevnih sond za hitro upodabljanje odsevnih materialov
[online]. Bachelor’s thesis. [Accessed 23 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=154363
Copy citation
Share:
Secondary language
Language:
English
Title:
Reflectance probe interpolation for fast rendering of reflective materials
Abstract:
The thesis deals with the problem of rendering reflective materials in computer graphics. To solve this problem, we developed two convolutional neural networks, the goal of which was to create the best possible images of the surroundings at a certain point of the rendered scene. Both approaches are based on the phenomenon of overfitting, which made it necessary to train each network individually for specific scenes. The first network is designed in such a way that it receives x, y and z coordinates in the scene at the input and generates an image of the surroundings at that point at the output. In the second approach, we divided the scene by triangulation and captured images of the surrounding area in all vertices of the triangles. Thus, the second network at the input receives three images of the surroundings (captured in the vertices of the triangle) and weights that reflect the distance of a point from these vertices, and at the output it provides a prediction of the image of the surroundings at a certain point in space. Both approaches successfully predict images of the surroundings at desired points in space, even if these were not part of the training set, but their accuracy depends on the complexity of the scene itself. Both methods solve the problem of sharp transitions between reflection probes when moving around the scene and are thus suitable for rendering reflections on moving objects.
Keywords:
computer graphics
,
reflectance probe
,
interpolation
,
convolutional neural network
Similar documents
Similar works from RUL:
Object tracking by segmentation and color depth image prediction
Transcription of piano music with convolutional neural networks
Prediction of interactions between proteins and RNA with deep 3D convolutional neural networks
Superposition and compression of deep neutral networks
Automatic punctuation in raw word sequences
Similar works from other Slovenian collections:
Time series classification based on convolutional neural networks
Back