izpis_h1_title_alt

Možnosti penjenja silikatnega stekla z uporabo vodnega stekla v oksidativni atmosferi
ID Strnad, Liza Marija (Author), ID Spreitzer, Matjaž (Mentor) More about this mentor... This link opens in a new window, ID Marinšek, Marjan (Comentor)

.pdfPDF - Presentation file, Download (3,59 MB)
MD5: 4326E6BB73B6F1AE0DBF61A552FBFEF1

Abstract
Penjeno steklo, trajnostni toplotno-izolacijski material, se pogosto uporablja za izolacijo stavb, industrijskih cevovodov, itd. Glavna surovina za njegovo izdelavo je odpadno drobljeno steklo, po izrabi pa se lahko popolnoma reciklira. Z uporabo penilnih sredstev, ki med procesom penjenja sproščajo plinaste komponente, dobimo porozen material. Ogljikova penilna sredstva dajejo v reduktivni atmosferi izdelke z dobrimi lastnostmi, medtem ko v zračni atmosferi ogljik izgori prehitro in do penjenja ne pride. V svoji magistrski nalogi sem raziskovala možnosti penjenja v zračni atmosferi, kjer sem za zaščito penilca na osnovi ogljika uporabila še sekundarno penilo – vodno steklo (WG). Cilj je bil preprečiti prehitro oksidacijo ogljika s kisikom iz okolice. Kot primarno penilno sredstvo sem uporabljala glicerol oziroma črni ogljik ter dodajala sredstva za izboljšanje končnih lastnosti izdelka. Določila sem optimalne pogoje priprave penilne zmesi in pogoje penjenja. Vzorce sem analizirala z različnimi metodami na različnih stopnjah priprave: i) analiza procesa penjenja (spremembe tekom segrevanja s segrevalnim mikroskopom in razvoj plinov med procesom s termogravimetrijo, sklopljeno z masno spektrometrijo), ii) analiza fizikalnih lastnosti (toplotna prevodnost in trdnost izdelka) in iii) karakterizacija strukture (kristaliničnost z rentgensko difraktografijo, velikost por s stereološko analizo fotografiranih površin vzorcev in analiza mikrostrukture z vrstičnim elektronskim mikroskopom). Vzorci z glicerolom in WG so pokazali visoko stopnjo kristalizacije, ki se zmanjša z dodatkom inhibitorja kristalizacije K3PO4 in večjimi delci surovin. Vendar ti poskusi niso pokazali zadostnega potenciala za toplotno-izolacijski material. V drugi fazi sem uporabila kombinacijo črnega ogljika in WG, pri čemer sem določila optimalno količino dodatka WG, t.j. 24 % (19 ut.%). Ta ustrezno zaščiti ogljik, da dobim vzorce z nižjo gostoto ter višjim deležem poroznosti, vendar pa povzroči močnejšo kristalizacijo vzorca. Neželena odprta poroznost, ki je pogosto posledica kristalizacije, je bila največji izziv pri vseh predhodnih vzorcih. Zato sem v zadnji fazi z dodatki (K3PO4, AlPO4, B2O3) optimizirala sestavo, zmanjšala kristalizacijo in izboljšala proces penjenja. Delež kristalnih faz je na rentgenskih difraktogramih vzorcev z dodatki občutno manjši. Določila sem penilno sestavo, ki je dala vzorce z najboljšimi lastnostmi. Pri penjenju na 790 °C (τ=30 min) brez sušenja penilne zmesi dobimo manj kristaliziran vzorec z dobrimi lastnostmi: ρapp=96 kg/m3, εtot=96 %, CP=94 %, toplotna prevodnost λ=41 mW/m·K, tlačna trdnost σ=0,23 MPa. SEM analiza je pokazala prisotnost drobnih por v stenah večjih por, kar daje izdelku večjo trdnost in boljše izolacijske lastnosti. Lastnosti optimalne sestave so primerljive z najboljšim komercialnim vzorcem (ρ=100 kg/m3, λ=36 mW/m·K, σ=0,5 MPa), ki pa je pripravljen v reduktivni atmosferi in ima bistveno večji ogljični odtis. Nadaljnje raziskave bi se lahko osredotočile na izboljšanje trdnosti materiala in dodatno izboljšanje toplotne izolativnosti te sestave.

Language:Slovenian
Keywords:penjeno steklo, črni ogljik, vodno steklo, glicerol, zračna atmosfera
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FKKT - Faculty of Chemistry and Chemical Technology
Year:2024
PID:20.500.12556/RUL-154349 This link opens in a new window
COBISS.SI-ID:185606915 This link opens in a new window
Publication date in RUL:07.02.2024
Views:727
Downloads:40
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Possibilities of silicate glass foaming with the use of water glass in oxidative atmosphere
Abstract:
Foamed glass, a sustainable thermal insulation material, is widely used for the insulation of buildings, industrial piping, etc. The main raw material for its production is waste cullet and material is fully recyclable once used. The use of foaming agents, which release gaseous components during the foaming process, yields a porous material. Carbon-based foaming agents give products with good properties in a reducing atmosphere, whereas in an air atmosphere the carbon oxidises too quickly and foaming does not occur. In my master thesis I investigated the possibilities of foaming in an air atmosphere, using a secondary foaming agent - water glass (WG), to protect the carbon-based foaming agent. The aim was to prevent the carbon from oxidising too quickly with ambient oxygen. I used glycerol or black carbon as the primary foaming agent and added agents to improve the final properties of the product. I determined the optimum composition of the foaming mixture and the foaming conditions. The samples were analysed by different methods at different stages of the preparation: i) analysis of the foaming process (changes during heating by Heating stage microscope and evolution of gases during the process by thermogravimetry coupled to mass spectrometry), ii) analysis of the physical properties (thermal conductivity and strength of the product), and iii) characterisation of the structure (crystallinity by X-ray powder diffraction, pore diameter by stereological analysis of photographed sample surfaces and microstructure analysis by scanning electron microscope). Samples with glycerol and WG showed a high degree of crystallisation, which is reduced by the addition of the crystallisation inhibitor K3PO4 and larger raw material particles. However, this combination did not show sufficient potential as a thermal insulation material. In the second stage, I used a combination of black carbon and WG and determined the optimum amount of WG addition, i.e. 24 % (19 wt.%). This adequately protects the carbon to give samples with lower density and a higher porosity percentage, but at the same time results in a higher crystallisation of the sample. Unwanted open porosity, often due to crystallisation, has been a major challenge in all previous samples. Therefore, in the final stage, I optimised the composition with additives (K3PO4, AlPO4, B2O3), reducing crystallisation and improving the foaming process. The proportion of crystalline phases is notably lower in the X-ray diffractograms of the samples with additives. I determined the foaming composition that gave the samples with the best properties. Foaming at 790 °C (τ=30 min) without drying of the foaming compound gives a less crystallised sample with good properties: ρapp=96 kg/m3, εtot=96 %, CP=94 %, thermal conductivity λ=41 mW/m·K, compressive strength σ=0,23 MPa. SEM analysis shows the presence of fine pores in the walls of the larger pores, which gives the product higher strength and better insulating properties. The properties of the optimal composition are comparable to the best commercial sample (ρ=100 kg/m3, λ=36 mW/m·K, σ=0.5 MPa), but it is prepared in a reductive atmosphere and has a significantly larger carbon footprint. Further research could focus on improving the strength of the material and further improving the thermal insulation performance of the optimal composition.

Keywords:foam glass, carbon black, water glass, glycerol, air atmosphere

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back