izpis_h1_title_alt

Merska invariantnost večstopenjskih postavk : magistrsko delo
ID Podobnik, Blaž (Author), ID Sočan, Gregor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (7,31 MB)
MD5: 25E0284AB92A6177E60995C6FE1A3EFD

Abstract
Primerjanje med skupinami igra pomembno vlogo v psihologiji in znanosti na splošno. Ko primerjamo skupine med sabo, predpostavljamo, da merski pripomoček meri isti konstrukt v obeh skupinah. Merska invariantnosti preverja psihometrično enakovrednost med skupinami in s tem omogoča primerljivost dosežkov med njimi. Preverjanje merske invariantnosti s potrjevalno faktorsko analizo poteka s pomočjo več gnezdenih modelov. Najprej preverimo konfiguralno invariantnost (enakodimenzionalno strukturo), ki nam omogoča enoten opis testnih dosežkov. Sledi metrična invariantnost (enakost faktorskih uteži), ki omogoča enako interpretacijo faktorjev prek skupin. Ko potrdimo tretji gnezdeni model, ki preverja skalarno invariantnost (enakost presečišč), lahko med sabo neposredno primerjamo skupine udeležencev. V vsakem koraku preverjamo, ali se bolj restriktiven model enako dobro prilega predhodnemu modelu. Prileganje preverjamo s pomočjo indeksov prileganja, kot so CFI, RMSEA, SRMR. Likertove lestvice so v psihologiji pogosto uporabljene za primerjanje med skupinami. Vprašanje, ali je za analizo merske invariantnosti primerneje uporabiti metode za številske ali kategorialne podatke, smo v magistrskem delu preverili s pomočjo simulacijske študije. Preverili smo vedenje indeksov prileganja in p-vrednosti χ2-testa glede na velikost vzorca, število odgovornih kategorij, število postavk, asimetričnost podatkov in simulirano pristranost podatkov. Na podlagi mejnih vrednosti smo preverili, ali so indeksi prileganja pod njihovo mejno vrednostjo za metrično in skalarno invariantnost. Mersko invariantnost vzorca smo potrdili, ko so trije izmed štirih kazalnikov potrdili dobro prileganje. Rezultati, pridobljeni v tej študiji, niso enoznačni. Postopki za analizo merske invariantnosti kategorialnih spremenljivk so bolj priporočljivi v vzorcih s 500 in 1000 udeleženci, medtem ko so postopki za številske podatke enako dobri ali boljši pri vzorcih s sedmimi odgovornimi kategorijami. Indeks prileganja CFI in p-vrednost χ2-testa sta se izkazala kot najprimernejši meri za ocenjevanje razlik med modeli za kategorialne podatke. Študija je pomembna, saj je ena izmed redkih študij, ki je raziskala vpliv mnogih faktorjev na indekse prileganja pri preverjanju merske invariantnosti kategorialnih spremenljivk.

Language:Slovenian
Keywords:merska invariantnost, potrjevalna faktorska analiza, Likertove lestvice, računalniška simulacija, psihometrija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FF - Faculty of Arts
Place of publishing:Ljubljana
Publisher:[B. Podobnik]
Year:2024
Number of pages:72 str.
PID:20.500.12556/RUL-154241 This link opens in a new window
UDC:159.9.075(043.2)
COBISS.SI-ID:186105347 This link opens in a new window
Publication date in RUL:04.02.2024
Views:791
Downloads:67
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Measurement invariance of multilevel variables
Abstract:
Group comparisons is one of the fundamental analytical procedures in psychology and science in general. When comparing groups, it is assumed that the scale, questionnaire, or metric, measures the same construct in both groups. However, due to measurement invariance this is not always the case. It is therefore important to implement measurement invariance when using such measures to assess the psychometric equivalence between groups, enabling comparability between them. Measurement invariance testing using factor analysis involves the use of multiple nested models. This is done by first testing for configural invariance (equidimensional structure), allowing a unified description of test scores. This is followed by testing for metric invariance (equality of factor loadings), enabling the same interpretation of factors across groups. Once the third nested model assessing scalar invariance (equality of intercepts) is tested for, direct comparisons between groups of participants can then be made. Each step of the nested model compares how well the data fits the more restrictive model in comparison to the baseline model. Model fit is assessed using fit indices such as CFI, RMSEA, SRMR. This research explored whether methods for numerical or categorical data are more suitable for analysing measurement invariance by utilising a simulation study. As Likert scales are often used for group comparisons in psychological research, measurement invariance was tested using simulated Likert-type survey responses. Using this data, the behaviour of fit indices and p-values of the χ2 test based on sample size, number of response categories, number of items, data asymmetry, and simulated data bias, were investigated. Using threshold values, it was then explored whether fit indices are below their threshold for metric and scalar invariance. Measurement invariance was confirmed when three out of four indicators showed a good fit. Results from this study therefore indicate that categorical methods are more suitable for analysing measurement invariance in samples with 500 and 1000 participants while numerical methods are similarly or better suited for samples using a seven point Likert scale. CFI and χ2 test p-value proved to be the most appropriate measures for evaluating differences between models for categorical data. This study is one of very few that has explored the impact of several factors on fit indices when assessing measurement invariance of Likert scales.

Keywords:measurement invariance, confirmatory factor analysis, Likert scales, computer simulation, psychometrics

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back