izpis_h1_title_alt

Uporaba umetnih nevronskih omrežij za rekonstrukcijo spektralnih vrednosti barvnih slik
ID Lazar, Mihael (Author), ID Hladnik, Aleš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (26,83 MB)
MD5: D5FAFB9BD2A892A0369D5EE4CB07EA5A
.pdfPDF - Appendix, Download (1,53 MB)
MD5: E8A9D09D4C56EAE374CD95698EB25394
.pdfPDF - Appendix, Download (1,25 MB)
MD5: 048AA26D5E20C0064C0BA5B223C1F821
This document has even more files. Complete list of files is available below.

Abstract
Barvo objektov najpogosteje opišemo s slikami, zajetimi s komercialno RGB kamero. Tak opis je odvisen od lastnosti naprave in osvetlitve objekta. Od teh dejavnikov je neodvisen opis objekta s spektrom refleksije, katerega zajem za točkovne odčitke omogoča spektrofotometer, in za večje objekte multispektralna ali hiperspektralna kamera. Te so drage, kar spodbuja raziskave glede možnosti preslikave posnetkov RGB kamere v spekter refleksije. Predlaganih je bilo mnogo metod, od popolnoma matematičnih modelov do pristopov z modeliranjem umetnih nevronskih omrežij (UNO) različnih arhitektur in kompleksnosti. Večina pristopov za modeliranje potrebuje podatke o lastnostih kamere in osvetlitvi. Pri metodi z uporabo UNO, predstavljeni v naši raziskavi, ki temelji na enostavnem polno povezanem nevronskem omrežju z nelinearnimi aktivacijskimi funkcijami nevronov v skritih plasteh, ter manjšim številom vhodov in večjim številom izhodov za modeliranje ne potrebujemo znanja o značilnostih kamere, njenih tipal in osvetlitvi, saj podatke za učenje UNO pridobimo s hkratnim zajemom objekta in referenčnih vzorcev. Posebna pozornost je bila usmerjena v ugotavljanje vplivov hiperparametrov na uspešnost rekonstrukcije spektra refleksije z modeli UNO glede na izbor učnega algoritma, velikost učne množice, število vhodnih podatkov – RGB odčitkov oz. število kamer, število nevronov v skritih plasteh in število skritih plasti, pri čemer smo postavili pet izhodiščnih delovnih hipotez in njihovo pravilnost raziskali v treh korakih, opisanih v člankih revij z indeksom SCI. Verjetnost iskanja uspešnih modelov UNO se z več iteracijami modeliranja pri izbrani konfiguraciji povečuje, a iskanje uspešnejših modelov je časovno zahtevno. Predlagana sta bila pristopa za učinkovitejše iskanje modelov UNO – prvi postopek s hitrejšim, a manj učinkovitim algoritmom učenja enoplastnih UNO, ki se izvaja na grafičnem procesorju, zoži območje iskanja za drugi, počasnejši, a učinkovitejši algoritem, ki se izvaja na centralni procesni enoti, in drugi postopek, ki glede na izbor hiperparametrov modelov UNO in izbor kriterijske funkcije predlaga center iskanja – število nevronov v skritih plasteh –, okoli katerega v ožji okolici iščemo najučinkovitejše modele UNO.

Language:Slovenian
Keywords:rekonstrukcija spektra refleksije, umetno nevronsko omrežje, vpliv hiperparametrov, razširjena učna množica, nelinearnost vzporednih kanalov kamer, vzvratno razširjanje, grafična procesna enota, algoritem Levenberg-Marquardt, polinomska aproksimacija
Work type:Doctoral dissertation
Organization:NTF - Faculty of Natural Sciences and Engineering
Year:2024
PID:20.500.12556/RUL-154067 This link opens in a new window
Publication date in RUL:23.01.2024
Views:619
Downloads:85
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Use of artificial neural networks for the reconstruction of spectral values of color images
Abstract:
The colour of objects is most often described using images captured with a commercial RGB camera. Such a description depends on the characteristics of the capturing device and the object illumination. Independent of these factors is the object description using the reflectance spectrum, which can be captured by a spectrophotometer for point readings and by a multi- or hyper-spectral camera for larger objects. The latter are expensive, which stimulates research into the possibility of mapping RGB camera images to the reflectance spectrum. Many methods have been proposed, ranging from purely mathematical models to artificial neural network (ANN) modelling approaches of different architectures and complexity. Most modelling approaches need information on camera properties and illumination. In the ANN method presented in our study, which is based on a simple, fully connected neural network with nonlinear activation functions of neurons in hidden layers and a smaller number of inputs and a larger number of outputs, the modelling does not require knowledge of the camera characteristics, its sensors and illumination, as the data for ANN learning is obtained by simultaneously capturing the object and the reference samples. Special attention was paid to determine the influence of hyperparameters on the performance of reflectance spectrum reconstruction using ANN models with respect to the choice of the learning algorithm, the size of the training set, the number of input data – RGB readings or the number of cameras, the number of neurons in the hidden layers, and the number of hidden layers, setting five initial working hypotheses and investigating their validity in a three-step study, described in SCI-indexed journal articles. The probability of finding successful ANN models increases with more modelling iterations for the chosen configuration, but finding more successful models is time-consuming. Two approaches are proposed to make the search for ANN models more efficient. The first procedure, using a faster but less efficient single-layer ANN learning algorithm executed on a graphics processor, narrows the search area for a second, slower, more efficient algorithm executed on a central processing unit, and the second procedure, which, given a selection of hyperparameters of the ANN models and a selection of a criterion function, proposes a search centre as the number of neurons in the hidden layers, around which to search for the best-performing ANN models in a narrower neighbourhood.

Keywords:reflectance spectrum reconstruction, artificial neural network, influence of hyperparameters, extended training set, camera's parallel channels' nonlinearity, backpropagation, graphics processing unit, Levenberg–Marquardt algorithm, polynomial approx

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Files

Loading...

Back