Details

Neural networks determination of material elastic constants and structures in nematic complex fluids
ID Zaplotnik, Jaka (Author), ID Pišljar, Jaka (Author), ID Škarabot, Miha (Author), ID Ravnik, Miha (Author)

.pdfPDF - Presentation file, Download (7,38 MB)
MD5: 3997F552E3AAD4ABA669CDC2F856C5D4
URLURL - Source URL, Visit https://www.nature.com/articles/s41598-023-33134-x This link opens in a new window

Abstract
Supervised machine learning and artificial neural network approaches can allow for the determination of selected material parameters or structures from a measurable signal without knowing the exact mathematical relationship between them. Here, we demonstrate that material nematic elastic constants and the initial structural material configuration can be found using sequential neural networks applied to the transmmited time-dependent light intensity through the nematic liquid crystal (NLC) sample under crossed polarizers. Specifically, we simulate multiple times the relaxation of the NLC from a random (qeunched) initial state to the equilibrium for random values of elastic constants and, simultaneously, the transmittance of the sample for monochromatic polarized light. The obtained time-dependent light transmittances and the corresponding elastic constants form a training data set on which the neural network is trained, which allows for the determination of the elastic constants, as well as the initial state of the director. Finally, we demonstrate that the neural network trained on numerically generated examples can also be used to determine elastic constants from experimentally measured data, finding good agreement between experiments and neural network predictions.

Language:English
Keywords:condensed-matter physics, nematic liquid crystals, neural networks, characterization and analytical techniques, liquid crystals, structure of solids and liquids
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2023
Number of pages:12 str.
Numbering:Vol. 13, art. 6028
PID:20.500.12556/RUL-154023 This link opens in a new window
UDC:538.9
ISSN on article:2045-2322
DOI:10.1038/s41598-023-33134-x This link opens in a new window
COBISS.SI-ID:149325827 This link opens in a new window
Publication date in RUL:19.01.2024
Views:662
Downloads:76
Metadata:XML DC-XML DC-RDF
:
ZAPLOTNIK, Jaka, PIŠLJAR, Jaka, ŠKARABOT, Miha and RAVNIK, Miha, 2023, Neural networks determination of material elastic constants and structures in nematic complex fluids. Scientific reports [online]. 2023. Vol. 13, no. 6028. [Accessed 25 April 2025]. DOI 10.1038/s41598-023-33134-x. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=154023
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Scientific reports
Shortened title:Sci. rep.
Publisher:Springer Nature
ISSN:2045-2322
COBISS.SI-ID:18727432 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Keywords:fizika kondenzirane snovi, nematski tekoči kristali, nevronske mreže

Projects

Funder:ARRS - Slovenian Research Agency
Project number:P1-0099
Name:Fizika mehkih snovi, površin in nanostruktur

Funder:ARRS - Slovenian Research Agency
Project number:N1-0195
Name:Metode in materiali za fotourejene matrike za kiralne tekočekristalne leče in fotonske komponente

Funder:ARRS - Slovenian Research Agency
Project number:J1-2462
Name:Topološka turbulenca v ograjenih kiralnih nematskih poljih

Funder:EC - European Commission
Funding programme:H2020
Project number:884928
Name:Light-operated logic circuits from photonic soft-matter
Acronym:LOGOS

Similar documents

Similar works from RUL:
  1. Superior macro-scale tribological performance of steel contacts based on graphene quantum dots in aqueous glycerol
  2. Super-low friction and wear in steel contacts enabled by tribo-induced structural degradation of graphene quantum dots
  3. Biorazgradljivost različnih oblik grafena
  4. Josephsonov pojav v kvantnih pikah
  5. Differences in nano-topography and tribochemistry of ZDDP tribofilms from variations in contact configuration with steel and DLC surfaces
Similar works from other Slovenian collections:
  1. Rapalska meja in razmejitvena komisija
  2. Vojaško-politična zavezništva evropskih držav in Primorci ob rapalski meji 1920-1941
  3. Organizirana izselitev prebivalstva iz Pulja
  4. Woodrow Wilson : od profesorja do predsednika
  5. Velika Britanija in Koroška 1918-1920

Back