izpis_h1_title_alt

Reflexivity of the space of transversal distributions
ID Kališnik, Jure (Author)

.pdfPDF - Presentation file, Download (329,33 KB)
MD5: FBC339E8055A6D634328DBB58BEB42F8
URLURL - Source URL, Visit https://link.springer.com/article/10.1007/s12220-023-01390-y This link opens in a new window

Abstract
For any smooth, Hausdorff and second-countable manifold $N$ one can define the Fréchet space ${\mathcal C}^{\infty}(N)$ of smooth functions on $N$ and its strong dual ${\cal E}'(N)$ of compactly supported distributions on $N$. It is a standard result that the strong dual of ${\cal E}'(N)$ is naturally isomorphic to ${\mathcal C}^{\infty}(N)$, which implies that both ${\mathcal C}^{\infty}(N)$ and ${\cal E}'(N)$ are reflexive locally convex spaces. In this paper we generalise that result to the setting of transversal distributions on the total space of a surjective submersion $\pi : P\to M$. We show that the strong ${\mathcal C}^{\infty}_c(M)$-dual of the space ${\cal E}'_{\pi} (P)$ of $\pi$-transversal distributions is naturally isomorphic to the ${\mathcal C}^{\infty}_c(M)$-module ${\mathcal C}^{\infty}(P)$.

Language:English
Keywords:distributions with compact support, Fréchet spaces, transversal distributions, homomorphisms of modules, reflexive modules
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2023
Number of pages:20 str.
Numbering:Vol. 33, iss. 10, art. 331
PID:20.500.12556/RUL-153557 This link opens in a new window
UDC:517.9
ISSN on article:1050-6926
DOI:10.1007/s12220-023-01390-y This link opens in a new window
COBISS.SI-ID:178959107 This link opens in a new window
Publication date in RUL:15.01.2024
Views:433
Downloads:36
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:The journal of geometric analysis
Shortened title:J. geom. anal.
Publisher:Springer Nature, Mathematica Josephina
ISSN:1050-6926
COBISS.SI-ID:30685696 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Projects

Funder:ARRS - Slovenian Research Agency
Project number:J1-1690
Name:p-eliptičnost v harmonični analizi in parcialnih diferencialnih enačbah

Funder:ARRS - Slovenian Research Agency
Project number:N1-0137
Name:Nelinearni valovi in spektralna teorija

Funder:ARRS - Slovenian Research Agency
Project number:N1-0237
Name:Holomorfne parcialne diferencialne relacije

Funder:ARRS - Slovenian Research Agency
Project number:P1-0291
Name:Analiza in geometrija

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back