izpis_h1_title_alt

Napovedovanje inflacije z nevronskimi mrežami z dolgim kratkoročnim spominom
ID Kavčič, Tilen (Author), ID Hovelja, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (625,11 KB)
MD5: 8FACEE77FC5A0D1026C9290BCACBB184

Abstract
Zaradi velike zaskrbljenosti glede inflacije v razvitih gospodarstvih so natančne napovedi stopenj inflacije bistvenega pomena za dobro informirane odločitve o fiskalni in monetarni politiki. To magistrsko delo analizira uporabo različnih modelov za boljše napovedovanje kratko, srednje in dolgoročnih sprememb inflacije. Opredeljene so tradicionalne metode, kot je model SARIMAX, ter sodobni modeli, ki temeljijo na umetni inteligenci in ekonometriji. Predlagan je model, ki temelji na nevronskih mrežah z dolgim kratkoročnim spominom. Določen je tudi osnovni model AR(1). Vzpostavljen je zanesljiv okvir za ocenjevanje definiranih modelov. Ta vključuje testiranje modelov z uporabo navzkrižnega preverjanja časovnih vrst na podatkih treh različnih gospodarstev. Analiza v vseh modelih prikaže pomanjkanja. Najbolje se osnovnemu modelu približa SARIMAX, medtem ko LSTM izraža potencial pri napovedovanju z večjo količino podatkov. Univerzalno napovedovanje inflacije ostaja nerešeno vprašanje, dokler raziskovalcem ne bodo na voljo obsežni makroekonomski in mikroekonomski podatki z modeli, učinkovitimi v tem okolju.

Language:Slovenian
Keywords:umetna inteligenca, nevronske mreže, inflacija, napovedni modeli, LSTM
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-153482 This link opens in a new window
COBISS.SI-ID:181837059 This link opens in a new window
Publication date in RUL:10.01.2024
Views:697
Downloads:128
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Inflation forecasting with long short-term memory neural networks
Abstract:
Given the high inflation concerns in advanced economies, accurate forecasts of inflation rates are essential for well-informed fiscal and monetary policy decisions. This master's thesis analyses the use of different inflation forecasting models to better predict short, medium and long term changes. Traditional methods such as the SARIMAX model are identified, as well as modern models based on artificial intelligence and econometrics. A model based on neural networks with long short-term memory is proposed. AR(1) model is defined as a baseline. A reliable framework for the evaluation of defined models is established. It includes model testing using time series cross-validation on data from three different economies. The analysis shows deficiencies in all models. SARIMAX comes closest to the baseline model, while LSTM shows potential in forecasting with a larger amount of data. Universal inflation forecasting remains an open question until researchers have access to comprehensive macroeconomic and microeconomic data with models that work in this environment.

Keywords:artificial intelligence, neural networks, inflation, predictive models, LSTM

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back