izpis_h1_title_alt

Uporaba ionizirajočega sevanja za proizvodnjo kemikalij
ID Berce, Luka (Author), ID Snoj, Luka (Mentor) More about this mentor... This link opens in a new window, ID Ambrožič, Klemen (Comentor)

.pdfPDF - Presentation file, Download (18,04 MB)
MD5: 6C3BCC9A7D0A10D4AAB7C23D8FAC02F0

Abstract
Radiacijska kemija je panoga, osredotočena na kemijske reakcije, ki jih vzbudi ionizirajoče sevanje. Takšnim reakcijam pravimo radioliza. Produkcija kemikalij z uporabo ionizirajočega sevanja sega v leto 1963, ko je Dow Inc. začel proizvajati etil bromid z sevanjem gama. V tem magistrskem delu z Monte Carlo metodami za transport delcev raziščemo deponiranje energije ionizirajočega sevanja v glicerolu, metanolu in vodi. Prikažemo razliko v deponirani energiji glede na obsevano kemikalijo ter raziščemo vpliv dodatkov, kot so gadolinij, litij ter bor, na deponirano energijo. Ugotovimo, da nam dodatek gadolinija poveča celotno deponirano energijo ter linearni prenos energije. Dodajanje manjših koncentracij bora (do $\approx$ 3 %) nam zviša deponirano energijo, nato začne vpliv bora zmanjševati deponirano energijo. Podobno ugotovimo za litij. Pokažemo, da nam litij in bor konvertirata nizko LET sevanje v visoko LET sevanje. Pokazali smo, da nam torej dodatek gadolinija, litija ter bora poveča energijo, ki je na voljo za kemijske reakcije. Grafično smo tudi prikazali razlike v deponirani energiji za posamezne prisotne delce, kot so nevtroni, fotoni, elektroni, delci alfa itd. Ugotovimo, da z dodajanjem litija in bora povečujemo deponirano energijo delcev alfa, s čimer pretvorimo nizko LET sevanje v visoko LET sevanje. Obravnavamo dva modela: preprosti model z mono-energijskim izvorom nevtronov ter model reaktorja TRIGE. Poleg deponirane energije v modelu TRIGA raziščemo tudi verjetnosti za deponirano energijo na interakcijo fotonov in nevtronov, kjer poskušamo razložiti nastanek povečanih verjetnosti. Pokažemo, da imajo nevtroni povečane verjetnosti zaradi sipanja na atomih kemikalij, fotoni pa zaradi Comptonovega sipanja. Na primeru eksperimentov obsevanj glicerola in ogljikovega dioksida predstavimo uporabo ionizirajočega sevanja ter specifično za ti dve snovi razložimo proces nastanka novih kemikalij.

Language:Slovenian
Keywords:Radiacijska kemija, MCNP simulacije, obsevanje kemikalij, deponirana energija, reaktor TRIGA, glicerol, ionizirajoče sevanje
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-153427 This link opens in a new window
COBISS.SI-ID:178696195 This link opens in a new window
Publication date in RUL:05.01.2024
Views:1093
Downloads:56
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Producing chemicals using ionizing radiation
Abstract:
Radiation chemistry is a field focused on chemical reactions induced by ionizing radiation. Such reactions are referred to as radiolysis. The production of chemicals using ionizing radiation dates back to 1963 when Dow Inc. began producing ethyl bromide using gamma radiation. In this MSc thesis, we explore the deposition of energy by ionizing radiation in glycerol, methanol, and water using Monte Carlo particle transport methods. We demonstrate the differences in deposited energy based on the irradiated chemical and investigate the impact of additives such as gadolinium, lithium, and boron on deposited energy. We find that the addition of gadolinium increases the overall deposited energy and linear energy transfer. Adding lower concentrations of boron (up to $\approx$ 3 %) increases deposited energy, after which the impact of boron starts to decrease deposited energy. We observe a similar trend for lithium. We find that adding lithium and boron converts low LET radiation to high LET radiation. We have therefore shown that adding gadolinium, boron and lithium increases available energy for chemical reactions. Furthermore, we graphically show the differences in deposited energy for individual particles, such as neutrons, photons, electrons, alpha particles, etc. We find that adding lithium and boron increases the impact of alpha particles on deposited energy. We consider two models: a simple model with a mono-energetic source of neutrons and a TRIGA reactor model. In addition to deposited energy in the TRIGA model, we investigate the probability of deposited energy per interaction for photons and neutrons, attempting to explain the increased probabilities. We show that neutrons have an increased probability due to scattering on atoms of chemicals, while photons have it due to Compton scattering. Using the example of experiments done on irradiation of glycerol and carbon dioxide, we present the use of ionizing radiation and specifically explain the process of generating new chemicals for these two substances.

Keywords:Radiation chemistry, MCNP simulations, irradiation of chemicals, deposited energy, TRIGA reactor, glycerol, ionizing radiation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back