izpis_h1_title_alt

Personalizirani molekulski označevalci za modulacijo s presnovo povezane bolezni zamaščenih jeter in hepatocelularnega karcinoma
ID Walakira, Andrew (Author), ID Rozman, Damjana (Mentor) More about this mentor... This link opens in a new window, ID Moškon, Miha (Comentor)

.pdfPDF - Presentation file, Download (8,43 MB)
MD5: 019883B301069DCECCBC873FAB8169B8

Abstract
Ozadje: Presnovno povezana maščobna bolezen jeter (MAFLD) je veliko zdravstveno breme po vsem svetu. Več kot 95 % bolnikov, pri katerih bolezen napreduje v hepartocelularni karcinom (HCC), ne preživi več kot pet let po diagnozi. Obvladovanje te bolezni je zapleteno zaradi pomanjkanja neinvazivnih diagnostičnih orodij, ki bi lahko odkrila bolezen v zgodnjih fazah. Poleg tega je na voljo le nekaj možnosti zdravljenja. Naš cilj je bil identificirati nove gene, ki jih je mogoče usmeriti v diagnozo in zdravljenje HCC. Domnevali smo, da; i) analiza podatkov asociacijskih študij celotnega genoma (GWAS) lahko razkrije nove kombinacije genetskih variant in genov, ki so povezani s HCC v kohortah bolnikov, ii) integrirana analiza transkriptomičnih podatkov iz tumorskega in okoliškega netumorskega tkiva lahko razkrije gene pomembne pri HCC, iii) identificirani geni so lahko napovedni dejavniki za razvoj HCC. Metode: Podatki o transkriptomiki in genotipu (zbirna statistika GWAS) iz študij raka na jetrih so bili dostopani iz javnih in hišnih baz podatkov. Podatki so bili predhodno obdelani po standardnih postopkih. Za končno analizo so bile upoštevane samo študije z razpoložljivimi metapodatki. Uporabljeni so bili zbirni statistični podatki iz študij GWAS, ker do podrobnih podatkov GWAS nismo mogli dostopati. Najprej sta bila razvita dva cevovoda za analizo podatkov. Prvi cevovod je bil namenjen odkrivanju medsebojnih interakcij med geni iz podatkov GWAS in je bil namenjen reševanju izzivov, povezanih z analizo tovrstnih podatkov. Ta cevovod minimizira filtriranje polimorfizmov enega nukleotida (SNP) v končni analizi, upošteva nelinearnost v podatkih SNP, upošteva odvisnosti med SNP znotraj gena in določi interakcije tipa gen-gen. Drugi cevovod je bil namenjen učinkoviti uporabi metabolnih modelov na nivoju genoma (GEM). Namen tega cevovoda je bil odpraviti izzive, povezane z ekstrakcijo modelov GEM, kot je izbira najprimernejše metode ekstrakcije modela in določitev pragov za pridobitev najustreznejših modelov. Ta cevovod je bil uporabljen za pridobivanje kontekstno-specifičnih modelov. Razviti cevovod je bil uporabljen za integracijo podatkov o transkriptomiki v človeški referenčni model, Human-GEM. Na podlagi tega smo pridobili kontekstno-specifične modele, ki so bili uporabljeni za računalniške simulacije. Z uporabo teh modelov smo določili spremenjene reakcije in izvedli analizo obogatitve podsistemov ter identificirali kandidatne gene.. Naredili smo metaanalizo diferencialne genske ekspresije med tumorskim in okoliškim netumorskim tkivom. Najprej je bila izvedena diferencialna analiza izražanja genov za vsak niz podatkov s prilagajanjem linearnih modelov z uporabo paketa LIMMA v programskem jeziku R. Temu je sledilo prilagajanje modelov naključnih učinkov za vsak gen za združevanje rezultatov različnih analiz. Geni s p-vrednostjo manj kot 0,05 in povprečjem |log2FC| >= 1 so bili opredeljeni kot signifikantno diferenčno izraženi. Ti geni so bili nato uporabljeni za analizo obogatitve poti KEGG in analizo omrežja v STRING db. Kandidatni geni iz hipoteze 1 in iz meta analize v hipotezi 2 so bili združeni v končni seznam kandidatnih genov. Geni, identificirani kot potencialni markerji, so bili potrjeni v človeški kohorti z uporabo RT-qPCR. Rezultati in zaključki: Identificirali smo naslednje gene kot relevantne pri HCC; ACSL1, ACSL4, ACSM3, GABRP, HAO1, IYD, PIPOX, PROZ, RDH5, APOF, DCN, LPA, GCKR, E2F7, CIDEB in OXT. Več bioloških procesov, kot so metabolizem maščobnih kislin, komplement in koagulacijska kaskada, kemična karcinogeneza in metabolizem retinola, je bilo opredeljenih kot ključne poti pri HCC. Integracija podatkov o transkriptomiki v referenčni metabolni model na nivoju človeškega genoma je pokazala, da so aktivacija maščobnih kislin, presnova purina, vitamina D in presnova vitamina E ključni procesi pri razvoju HCC in jih je zato treba nadalje raziskati za razvoj novih terapij. Geni, LPA, DCN, APOF, PROZ, PIPOX, se izražajo v krvi in so zato dobri kandidati za razvoj diagnostike. Naša računalniška analiza in validacija v človeški kohorti zagotavljata prvi dokaz, da je gen GABRP pomemben pri HCC pri ljudeh in ga je treba skupaj z geni IYD in RDH5 nadalje raziskati v študijah na ljudeh

Language:Slovenian
Keywords:Hepatocellular carcinoma, Metabolic Associated Fatty Liver Disease, genome-scale metabolic modelling, key pathways
Work type:Doctoral dissertation
Organization:MF - Faculty of Medicine
Year:2023
PID:20.500.12556/RUL-153384 This link opens in a new window
Publication date in RUL:29.12.2023
Views:547
Downloads:44
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Personalized Molecular Signatures for Modulating Metabolic Associated Fatty Liver Disease and Hepatocellular Carcinoma
Abstract:
Background: Metabolic Associated Fatty Liver Disease (MAFLD) is a major health burden worldwide. Over 95% of patients who progress to hepatocellular carcinoma (HCC) do not survive beyond five years after diagnosis. The management of this disease is complicated by the lack of noninvasive diagnostic tools that can detect the disease in its early stages. Moreover, only a few treatment options are available. We aimed to identify novel genes that can be targeted for the diagnosis and therapy of HCC. We hypothesised that; i) the analysis of genome-wide association studies (GWAS) data can reveal novel combinations of genetic variants and genes that are associated with HCC in patient cohorts, ii) the integrated analysis of transcriptomics data from tumor and surrounding non tumor tissue can reveal genes important in HCC, iii) the identified genes can be predictive factors for the development of HCC. Methods: Transcriptomics data and genotype (GWAS summary statistics) from liver cancer studies were accessed from both public and in house databases. The data was pre-processed following standard procedures. Only studies with substantive meta data available was considered for the final analysis. Summary statistics from GWAS studies were used because we were unable to access GWAS data. Two data analysis pipelines were developed. The first pipeline was for detecting gene-gene interactions from genome-wide association studies (GWAS) data and aimed to solve the challenges involved in the analysis of these type of data. To develop this pipeline, we used genomics data from patients with inflammatory bowel disease. This pipeline minimises filtering of single nucleotide polymorphisms (SNPs) in the final analysis, accounting for non-linearity in SNP data and for dependencies between SNPs within a gene, and yields the gene-gene interactions. The second pipeline was for the efficient application of genome-scale metabolic modeling (GEM) and here we used data from a Cyp51 knockout mice diet experiment that aimed to study development of MAFLD in mice. This pipeline aimed to remedy the challenges involved in extraction of GEMs, such as choosing the most appropriate model extraction method, and thresholds to yield the most relevant models. This pipeline was used for extracting personalised models. The developed pipeline was applied to integrate transcriptomics data in a human reference model, the Human-GEM, to yield personalised models which were used for in silico simulations. Using these models, we performed reactions and subsystems enrichment analysis and identified candidate genes from significantly perturbed reactions. We did a meta-analysis of differential gene expression between tumor and surrounding non tumor tissue using data from the integrative molecular database of hepatocellular carcinoma (HCCDB). First, differential gene expression analysis for each data set was done by fitting linear models using LIMMA package in R software. This was followed by fitting random effects models for each gene to combine results from different analyses. Genes with p-value less than 0.05 and mean |log2FC| >= 1 were identified as significantly differentially expressed. Those genes were then used for KEGG pathway enrichment analysis and network analysis in STRING db. Candidate genes from hypothesis 1 and from the meta analysis in hypothesis 2 were combined to form the final list of candidate genes. Genes identified as potential candidate markers were validated in a human cohort using RT-qPCR. Results and conclusions: With combination of multiple computational modelling and data mining approaches, followed by experimental validation in human samples, we identified the following genes as relevant in HCC; ACSL1, ACSL4, ACSM3, GABRP, HAO1, IYD, PIPOX, PROZ, RDH5, APOF, DCN, LPA, GCKR, E2F7, CIDEB, and OXT. Several biological processes like fatty acid metabolism, complement and coagulation cascade, chemical carcinogenesis and retinol metabolism were identified as key pathways in HCC. Integration of transcriptomics data into a reference human genome-scale metabolic model revealed that fatty acid activation, purine metabolism, vitamin D, and vitamin E metabolism are key processes in the development of HCC and therefore need to be explored further for the development of new therapies. Genes, LPA, DCN, APOF, PROZ, PIPOX, are expressed in blood and hence are good candidates for developing diagnostics. Our computational analysis and validation in a human cohort provide the first evidence that GABRP gene is important in HCC in humans, and together with IYD and RDH5 genes should be investigated further in human studies.

Keywords:Hepatocellular carcinoma, Metabolic Associated Fatty Liver Disease, genome-scale metabolic modelling, key pathways

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back