izpis_h1_title_alt

Mrežna homologija vozlov : magistrsko delo
ID Šipec, Katarina (Author), ID Strle, Sašo (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (754,51 KB)
MD5: 66784854A3CD2428671115A8B17F6A46

Abstract
V tem delu opišemo tri vrste mrežne homologije vozlov - popolnoma blokirano, neblokirano in enostavno blokirano homologijo. Predstavljene so povezave z nekaterimi drugimi vozelnimi invariantami, natančneje s Seifertovimi ploskvami, rodom vozla, Alexandrovim polinomom in razvozlavnim številom.

Language:Slovenian
Keywords:vozel, homologija, mrežna homologija, invarianta, mrežni diagram, dvojno stopničenje, Alexandrov polinom, razvozlavno število, Seifertova ploskev, rod
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-153325 This link opens in a new window
COBISS.SI-ID:178295043 This link opens in a new window
Publication date in RUL:22.12.2023
Views:731
Downloads:85
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Grid homology for knots
Abstract:
We describe three types of grid homology for knots - fully blocked, unblocked and simply blocked homology. Connections to some other knot invariants are presented, in particular to Seifert surfaces, the knot genus, the Alexander polynomial and the unknotting number.

Keywords:knot, homology, grid homology, invariant, grid diagram, bigrading, Alexander polynomial, unknotting number, Seifert surface, genus

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back