Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Does a compatibilizer enhance the properties of carbon fiber-reinforced composites?
ID
Gangwani, Prashant
(
Author
),
ID
Kalin, Mitjan
(
Author
),
ID
Emami, Nazanin
(
Author
)
PDF - Presentation file,
Download
(6,35 MB)
MD5: 131567CF06DF396956C8E68A88062C3B
URL - Source URL, Visit
https://www.mdpi.com/2073-4360/15/23/4608
Image galllery
Abstract
We have evaluated the effectiveness of compatibilizers in blends and composites produced using a solvent manufacturing process. The compatibilizers were two different types of polyethylene (linear low-density and high-density) grafted with maleic anhydride (MAH) and a highly functionalized, epoxy-based compatibilizer with the tradename Joncryl. The selected material combinations were an ultra-high-molecular-weight polyethylene (UHMWPE) with MAH-based materials as compatibilizers and a polyphenylene sulfide plus polytetrafluoroethylene (PPS-PTFE) polymer blend with an epoxy-based compatibilizer. The findings revealed that while the compatibilizers consistently enhanced the properties, such as the impact strength and hardness of PPS-based compositions, their utility is constrained to less complex compositions, such as fibrous-reinforced PPS or PPS-PTFE polymer blends. For fibrous-reinforced PPS-PTFE composites, the improvement in performance does not justify the presence of compatibilizers. In contrast, for UHMWPE compositions, compatibilizers demonstrated negligible or even detrimental effects, particularly in reinforced UHMWPE. Overall, the epoxy-based compatibilizer Joncryl stands out as the only effective option for enhancing mechanical performance. Thermal and chemical characterization indicated that the compatibilizers function as chain extenders and enhance the fiber–matrix interface in PPS-based compositions, while they remain inactive in UHMWPE-based compositions. Ultimately, the incompatibility of the compatibilizers with certain aspects of the manufacturing method and the inconsistent integration with the polymer are the main reasons for their ineffectiveness in UHMWPE compositions.
Language:
English
Keywords:
compatibilizers
,
carbon fiber
,
polymer composites
,
UHMWPE
,
PTFE
,
PPS
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FS - Faculty of Mechanical Engineering
Publication status:
Published
Publication version:
Version of Record
Year:
2023
Number of pages:
18 str.
Numbering:
Vol. 15, iss. 23, [art. nr.] 4608
PID:
20.500.12556/RUL-153131
UDC:
678
ISSN on article:
2073-4360
DOI:
10.3390/polym15234608
COBISS.SI-ID:
178027779
Publication date in RUL:
19.12.2023
Views:
968
Downloads:
36
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Polymers
Shortened title:
Polymers
Publisher:
MDPI
ISSN:
2073-4360
COBISS.SI-ID:
517951257
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Secondary language
Language:
Slovenian
Keywords:
kompatibilizatorji
,
ogljikova vlakna
,
polimerni kompoziti
Projects
Funder:
ARRS - Slovenian Research Agency
Project number:
P2-0231
Name:
Tribologija
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back