izpis_h1_title_alt

Neprotislovnost klasične sintetične teorije izračunljivosti : magistrsko delo
ID Putrle, Žiga (Author), ID Bauer, Andrej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (707,72 KB)
MD5: AAD71E850B545F8B05BC44651DE652DB

Abstract
Yannick Forster v svojem doktorskem delu Computability in constructive type theory predlaga nov sintetični pristop k teoriji izračunljivosti, ki omogoča razvoj teorije na klasičen način s pomočjo dokazovalnega pomočnika. Teorijo izračunljivosti razvije v računu induktivnih konstrukcij (RIK) (ang. calculus of inductive constructions), ki je osnova dokazovalnega pomočnika Coq, in predpostavi, da lahko v RIK-u uporabimo sintetično Churchevo tezo (SCT), zakon izključene sredine (ZIS) in pravila velike uporabe (PVU), ne da bi s tem uvedli protislovje. Predpostavko zagovarja s sklicevanjem na podobne že dokazane rezultate, vendar dokaza neprotislovnosti ne poda. Naš prispevek k Forsterjevemu delu je dokaz, da je sintetična teorija izračunljivosti, ki jo razvije v RIK-u + SCT + ZIS + PVU, neprotislovna. Osredotočimo se na del RIK-a, ki ga Forster uporablja pri razvoju teorije, in ga imenujemo fRIK. Podamo dva dokaza neprotislovnosti fRIK-a + SCT + ZIS + PVU. V prvem dokazu sodbe sistema fRIK + SCT + ZIS + PVU sintaktično preslikamo v sodbe sistema fRIK + SCT + PVU, kjer vse logične izjave nadomestimo z njihovo stabilno obliko in se tako izognemo aksiomu ZIS. Nato zgradimo model fRIK + SCT + PVU v teoriji realizabilnosti. V drugem dokazu zgradimo model fRIK + SCT + ZIS + PVU direktno. V modelih odvisne tipe interpretiramo kot družine skupkov, svet logičnih izjav P kot skupek ⠇Per(K1), kjer je Per(K1) kategorija delnih ekvivalenčnih relacij nad Kleenejevo prvo algebro K1, in svet stabilnih logičnih izjav P¬¬ kot skupek ⠇2, kjer je 2 množica skupkov 0 in 1.

Language:Slovenian
Keywords:teorija tipov, teorij izračunljivosti, teorija realizabilnosti, dokazovalni pomočniki
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-153088 This link opens in a new window
COBISS.SI-ID:177554179 This link opens in a new window
Publication date in RUL:16.12.2023
Views:719
Downloads:55
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Consistency of classical synthetic computability theory
Abstract:
In his doctoral thesis Computability in constructive type theory, Yannick Forster suggests a new synthetic approach towards computability theory that allows development of the theory in a classical way by using proof assistants. He develops the theory within calculus of inductive constructions (CIC), the underlying type system of Coq proof assistant. He assumes that in CIC we can use synthetic Church’s thesis (SCT), law of excluded middle (LEM) and rules of large elimination (RLE) without making the theory inconsistent. He justifies his assumption by referencing similar proven results, but he does not provide a proof. Our contribution to Forster’s work is a proof that synthetic computability theory developed in CIC + SCT + LEM + RLE is consistent. We focus on a fragment of CIC that Forster uses to develop the theory and name it fCIC. We prove the consistency of fCIC + SCT + LEM + RLE in two ways. First, we syntactically map judgments from fCIC + SCT + LEM + RLE to fCIC + SCT + RLE, where we replace logical propositions with their stable form which allows us to avoid ZIS. Then we build a model of fCIC + SCT + RLE in the theory of realizability. In the second proof, we build the model of fRIK + SCT + ZIS + RLE directly. We model dependent types as families of assemblies, universe of propositions P as assembly ⠇Per(K1), where Per(K1) is a category of partial equivalence relations over Kleene’s first algebra K1, and the universe of stable propositions P¬¬ as an assembly ⠇2, where 2 is a set of assemblies 0 and 1.

Keywords:type theory, computability theory, realizability theory, proof assistants

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back