izpis_h1_title_alt

Inverzije permutacij, permutacijski grafi in tekmovalnostni grafi
ID Uranič, Luka (Author), ID Oblak, Polona (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (435,86 KB)
MD5: CF4383A7FC4460FBCF4D2A3E758A0364

Abstract
V diplomski nalogi si najprej ogledamo inverzije permutacij, njihove lastnosti, rodovno funkcijo za število permutacij množice [n] z i inverzijami in Bruhatovi delni urejenosti. Nato pokažemo, kako predstavimo permutacije s permutacijskimi grafi, karakteriziramo permutacijske grafe s pomočjo kohezivnega zaporedja vozlišč, pokažemo, da so gosenice edina drevesa, ki so permutacijski grafi, ter pokažemo, da za vsako gosenico obstajata natanko dve permutaciji, ki generirata permutacijski graf izomorfen tej gosenici. Potem si ogledamo, kaj so tekmovalnostni grafi, množice tekmovalcev, množice posrednih in neposrednih tekmovalcev ter algoritem za izračun množic posrednih in neposrednih tekmovalcev, ki ne potrebuje konstrukcije tekmovalnostega grafa. Na koncu uporabimo algoritem na primeru z resničnimi podatki.

Language:Slovenian
Keywords:permutacije, inverzije permutacij, rangiranja, permutacijski grafi, tekmovalnostni grafi
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-153059 This link opens in a new window
COBISS.SI-ID:178802691 This link opens in a new window
Publication date in RUL:15.12.2023
Views:928
Downloads:73
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Inversions of permutations, permutation graphs and competitivity graphs
Abstract:
In the thesis, we first examine inversions of permutations, their properties, the generating function for the number of permutations of the set [n] with i inversions, and Bruhat partial orders. Then, we present how permutations can be represented with permutation graphs and characterize permutation graphs using a cohesive vertex-set order. We show that caterpillars are the only trees that are permutation graphs, and prove that for every caterpillar graph, there are exactly two permutations that generate a permutation graph isomorphic to the caterpillar. Next, we explore competitivity graphs, sets of competitors, sets of eventual competitors, and an algorithm to calculate the sets of eventual competitors that does not require the construction of a competitivity graph. Finally, we apply the algorithm to a concrete example featuring real-world data.

Keywords:permutations, inversions of permutations, rankings, permutation graphs, competitivity graphs

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back