izpis_h1_title_alt

Style transfer of Aartworks using neural networks
ID KURBEGOVIĆ, ENIO (Author), ID Bosnić, Zoran (Mentor) More about this mentor... This link opens in a new window, ID Papič, Aleš (Comentor)

.pdfPDF - Presentation file, Download (16,90 MB)
MD5: 71829D59C6C5DEB409D3C760D4DD7A17

Abstract
In this thesis, we implement a neural style transfer model, which uses so-called “meta networks” to train image transformation networks. A trained image transformation network takes in two images - a content and a style image, and generates a new image, combining the content from the first with the style from the second image. We take an already existing model and train it on our own style dataset, as well as reduce the size of the content dataset, in order to see how to perform style transfer on a smaller amount of training data. Finally, we create a website, which allows users to generate their own stylized images using our trained models. At the end of the project we can say that meta networks have proven to be very efficient for operations with smaller datasets and they produce satisfactory results.

Language:English
Keywords:artificial intelligence, neural networks, neural style transfer, meta networks, image transformation networks, content images, style images
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-153006 This link opens in a new window
COBISS.SI-ID:178678787 This link opens in a new window
Publication date in RUL:14.12.2023
Views:918
Downloads:55
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Prenos sloga umetniških del z uporabo nevronskih omrežij
Abstract:
V tem članku smo implementirali model za nevronski prenos sloga, ki uporablja tako imenovana “meta omrežja” za ustvarjanje omrežij za preoblikovanje slik. Usposobljeno omrežje za preoblikovanje slik sprejme dve sliki - vsebinsko in stilsko sliko - ter ustvari novo sliko, pri čemer združi vsebino s prve slike s slogom iz druge slike. Že obstoječi model učimo na lastni bazi podatkov stilskih slik in zmanjšamo velikost baze podatkov vsebinskih slik, da bi videli, kako narediti prenos sloga na manjši količini podatkov za učenje. Ustvarili smo spletno stran, ki uporabnikom omogoča, da ustvarijo lastne stilizirane slike z uporabo naših usposobljenih modelov. Ob zaključku lahko rečemo, da so se meta omrežja izkazala za učinkovita z manjšimi nabori podatkov in dajejo zadovoljive rezultate.

Keywords:umetna inteligenca, nevronske mreže, nevronski prenos sloga, meta mreže, mreže za preoblikovanje slik, vsebinske slike, slogovne slike

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back