Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Stock price prediction using probabilistic machine learning models
ID
Ocepek, David
(
Author
),
ID
Demšar, Jure
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(6,44 MB)
MD5: F43FEF1BBFC2CBD9A8AA4713AB9CF850
Image galllery
Abstract
Our thesis had three main goals. The first one was to create a neural network-based stock portfolio trading agent for predicting future stock price distributions. This allows traders not only to estimate future trends for a given stock but also to predict risks associated with the stock. The second goal was to improve this agent's profitability by training it with custom loss functions, specifically designed for the nature of stock forecasting problems. The third goal was to create a realistic brokerage environment for running trading simulations in order to evaluate the success of our models. We developed several neural network-based models and compared them with more traditional time series forecasting approaches. For estimating uncertainty we used Markov chain dropout or the quantile loss. To further improve our results, agents facilitated two kinds of portfolio optimization techniques, the expected return maximization, which did not use uncertainty in its decision-making, and the chance-constrained optimization, which did. Based on our experiments, we conclude that trading commissions strongly affect agent profitability. The most profitable models were the temporal fusion transformer and a simple neural network, resulting in gains of 65% for US residents and 19% for non-US residents. The custom loss function did not yield the desired results and performed worse than mean square error. In terms of optimizers, chance-constrained optimization increases the profitability of agents but is riskier as it is unable to guarantee a certain level of risk to the user.
Language:
English
Keywords:
stock price forecasting
,
chance-constrained optimization
,
risk-estimation
,
stock trading
,
neural networks
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2023
PID:
20.500.12556/RUL-152756
COBISS.SI-ID:
177588483
Publication date in RUL:
06.12.2023
Views:
752
Downloads:
80
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
OCEPEK, David, 2023,
Stock price prediction using probabilistic machine learning models
[online]. Master’s thesis. [Accessed 18 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=152756
Copy citation
Share:
Secondary language
Language:
Slovenian
Title:
Napovedovanje cen delnic z uporabo modelov verjetnostnega strojnega učenja
Abstract:
Naša naloga je imela tri glavne cilje. Prvi cilj je bil ustvariti agenta za portfeljsko trgovanje z delnicami, ki bi uporabljal nevronske mreže za napovedovanje porazdelitev cen delnic. To bi omogočilo trgovalcem, ne le da ocenijo prihodnje trende v ceni določene delnice, ampak tudi da napovejo, kolikšno je tveganje, povezano s to delnico. Drugi cilj je bil izboljšati dobičkonosnost tega agenta z uporabo izgub, posebej zasnovanih za napovedovanje cen delnic. Tretji cilj je bil ustvariti realistično borzno okolje za simuliranje trgovanja, s pomočjo katerega smo ocenili uspešnost naših modelov. Razvili smo več nevronskih mrež in jih primerjali z bolj tradicionalnimi pristopi za napovedovanje časovnih nizov. Za oceno negotovosti smo uporabili Monte-Carlo dropout ali kvantilno funkcijo izgube. Za nadaljnje izboljšanje rezultatov so agenti uporabljali dve tehnike za optimizacijo portfelja: optimizacija pričakovanega donosa, ki ni upoštevala negotovosti pri sprejemanju odločitev, in optimizacija z verjetnostnimi pogoji, ki jo je upoštevala. Na podlagi naših eksperimentov sklepamo, da provizije za trgovanje močno vplivajo na dobičkonosnost agenta. Najbolj dobičkonosni modeli so bili časovni fuzijski transformator in preprosta nevronska mreža, z uporabo katerih je agent dosegel dobiček v višini 65% za rezidente ZDA in 19% za rezidente drugih držav. Prilagojena funkcija izgube je bila slabša od srednje kvadratne napake. Kar zadeva optimizatorje, je optimizacija z verjetnostnimi pogoji povečala dobičkonosnost agentov, vendar je bolj tvegana, saj ni mogla zagotoviti določene ravni tveganja za uporabnika.
Keywords:
napovedovanje cen delnic
,
optimizacija z verjetnostnimi omejitvami
,
ocena tveganja
,
trgovanje z delnicami
,
nevronske mreže
Similar documents
Similar works from RUL:
Odgovor na "polemiko" Irene Šumi
Samostan kot oblika življenja in model sveta
Antropologija gledališča - identifikacija v gledališču
Kultura popotništva
Koka skozi oči slovenskega študenta sociologije
Similar works from other Slovenian collections:
Antropologija o "teoriji" zarote, znanosti in refleksivnosti
Back