izpis_h1_title_alt

Nevronska mreža za monokularno ocenjevanje globinske slike v vodnem okolju
ID Todorov, Leon (Author), ID Kristan, Matej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,98 MB)
MD5: 40E8B4A72CC4168A813DCF6D15439E76

Abstract
Avtonomna plovila postajajo obetavna rešitev za številne izzive v vodnem okolju, kot so raziskovanje nedostopnih območij, nadzorovanje in pomorska logistika. Ocena oddaljenosti bližnje okolice plovila bi morebiti lahko bila uporabljena kot vir dodatne informacije za avtonomno navigacijo in pri drugih, prej omenjenih izzivih. Trenutno ne obstaja nobena raziskava, ki bi evalvirala kako se najmodernejše metode za monokularno ocenjevanje globinske slike obnašajo v vodnem okolju. V sklopu diplomske naloge evalviramo metodo DPT, uporabljeno za monokularno ocenjevanje globinske slike iz barvnih slik vodnega okolja in predlagamo ustrezne nove variacije. Za treniranje smo uporabili podatkovno množico MODD2, uspešnost metod pa smo ovrednotili s podatkovno množico MaSTR1325. Obe vsebujeta slike splošnega vodnega okolja, ki jih je zajelo avtonomno plovilo. Ker so takšna plovila ponavadi opremljena z IMU in obe podatkovni množici poleg barvnih slik vsebujeta tudi časovno sinhronizirane IMU meritve, predlagamo še dve dodatni metodi, ki poleg barvnih slik uporabljata tudi to dodatno informacijo. Ker podatkovni zbirki ne vsebujeta zlatega standarda globinskih slik, vsebujeta pa stereo slikovne pare, smo referenčne vrednosti za treniranje zgenerirali z metodo CREStereo, ki globinsko sliko napove iz stereo slikovnega para. Vse predlagane metode presegajo uspešnost osnovne metode DPT v vodnem okolju.

Language:Slovenian
Keywords:računališki vid, vodno okolje, transformerji, avtonomno plovilo, monokularno ocenjevanje globinske slike
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-152711 This link opens in a new window
COBISS.SI-ID:163718659 This link opens in a new window
Publication date in RUL:04.12.2023
Views:426
Downloads:54
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Neural network for monocular depth estimation in maritime enviroment
Abstract:
Unmanned surface vehicles are becoming a promising solution to many challenges in maritime enviroment, such as exploration of inaccessible areas, surveillance and maritime logistics. Estimation of the USV's near-surrounding distance could potentially be used as a source of additional information for autonomous navigation and for other challenges mentioned above. There is currently no research evaluating how state-of-the-art methods behave in maritime environment. As part of the thesis, we train the DPT model used for monocular depth estimation from colour images of maritime environment, analyse the results and propose new appropirate variations. The MODD2 dataset is used for training and the proposed methods are evaluated with the MaSTR1325 dataset. Both contain images of general maritime environment captured by an USV. Since such vessels are usually equipped with IMUs and both datasets contain time-synchronized IMU measurements in addition to colour images, we propose two additional models that use this added information. Since the two datasets do not contain ground truth depth images, but do contain stereo image pairs, we generated the reference values for training with the CREStereo model which predicts depth images from the stereo image pairs. All proposed models outperform the baseline DPT model in maritime environment.

Keywords:computer vision, maritime enviroment, transformers, unmanned surface vehicle, monocular depth estimation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back