izpis_h1_title_alt

Algoritmi za reševanje problema matričnih napolnitev
ID Klančar, Matej (Author), ID Zalar, Aljaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,76 MB)
MD5: 7D6831C4BE16C57F180FBD55EEDB4E1D

Abstract
Problem matričnih napolnitev sprejme matriko, ki nima določenih vrednosti vseh elementov, cilj pa je določiti vrednosti teh elementov tako, da bo rang napolnjene matrike najmanjši možen. V diplomskem delu predstavimo teoretično ozadje petih različnih algoritmov, ki rešujejo ta problem (NNM, SVT, TNNM, ASD, LMaFit), in jih testiramo. Pri testiranju se osredotočimo na problem rekonstrukcije slik, kjer vrednosti nekaterih pikslov ne poznamo. Analiziramo različne vidike rekonstrukcij, rezultate pa interpretiramo prek matematičnega ozadja algoritmov. Rezultate primerjamo tudi z uveljavljeno metodo rekonstrukcije slik, ki temelji na reševanju Laplaceove diferencialne enačbe.

Language:Slovenian
Keywords:matrične napolnitve, minimizacija ranga, rekonstrukcija slik, priporočilni sistemi
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-152710 This link opens in a new window
COBISS.SI-ID:163657987 This link opens in a new window
Publication date in RUL:04.12.2023
Views:1284
Downloads:227
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Algorithms for solving the matrix completion problem
Abstract:
The matrix completion problem considers a matrix in which some elements are unknown. The goal is to determine the elements, such that the rank of the filled matrix is minimal. In this thesis, we present the theoretical background of five different algorithms used to solve this problem (NNM, SVT, TNNM, ASD, LMaFit) and test them. In testing, we focus on the reconstruction of images where the values of some pixels are unknown. We analyze different aspects of reconstructions and interpret the results referring to the mathematical background of the algorithms. We also compare the results with a more standard method of image reconstruction, based on solving the Laplace differential equations.

Keywords:matrix completion, rank minimization, image reconstruction, recommendation systems

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back