izpis_h1_title_alt

Mobilna aplikacija za prepoznavanje škodljivih sestavin v živilih
ID ŠVIKART, ROK (Author), ID Zrnec, Aljaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,14 MB)
MD5: 59A944A64420D9F28366C2727BD18450

Abstract
V diplomski nalogi je obravnavan problem razvoja mobilne aplikacije za Android, ki omogoča prepoznavanje aditivov na izdelkih s pomočjo kamere. Naš pristop temelji na uporabi knjižnice ML Kit, ki omogoča analizo slik in prepoznavanje aditivov na deklaracijah izdelkov. Za shranjevanje podatkov smo uporabili platformo Firebase Realtime Database, ki nam omogoča enostavno hranjenje in posodabljanje aditivov. Rezultat diplomske naloge je razvoj delujoče mobilne aplikacije, ki omogoča uporabnikom enostavno skeniranje izdelkov in prepoznavanje aditivov. Povprečna natančnost prepoznavanja sestavin -- aditivov na deklaracijah izdelkov je 70,56%. Diplomsko delo prispeva k razvoju učinkovite rešitve za prepoznavanje aditivov z mobilno aplikacijo, ki uporabnikom omogoča enostavno pridobivanje dodatnih informacij o aditivih v deklaracijah izdelkov.

Language:Slovenian
Keywords:optično prepoznavanje znakov, OCR, mobilna aplikacija, Firebase Realtime Database, ML Kit
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-152692 This link opens in a new window
COBISS.SI-ID:163837955 This link opens in a new window
Publication date in RUL:04.12.2023
Views:470
Downloads:73
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Mobile application for recognition of harmful ingredients in food
Abstract:
In this thesis, the problem of developing a mobile application that enables the recognition of additives in products using the camera is addressed. Our approach is based on the use of ML Kit library, which allows image analysis and recognition of additives on product labels. For data storage, we used the Firebase Realtime Database platform, which enables easy storage and updating of additives. The result of this thesis is the development of a functional mobile application that allows users to easily scan products and recognize additives. On average detection accuracy of additives on the products is 70,56%. Our thesis contributes to the development of an efficient solution for additive recognition through a mobile application, providing users with an easy way to obtain additional information about additives in product labels.

Keywords:Optical character recognition, OCR, mobile aplication, Firebase Realtime Database, ML Kit

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back