izpis_h1_title_alt

Optimizacija učenja globokih biometričnih modelov pri biometriji uhljev
ID ŠTEFE, KLEMEN (Author), ID Emeršič, Žiga (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,29 MB)
MD5: 29A3A42A72896F0DCBCE92B5C74D9FD0

Abstract
Najbolj ključen dejavnik pri delovanju globokih biometričnih modelov je njihov postopek učenja. Diplomsko delo raziskuje različne pristope k optimizaciji učenja globokih nevronskih mrež, z namenom izboljšave njihove klasifikacijske točnosti. Osredotočamo se na metode iz področja zmanjšanja prileganja podatkom in vpliva različnih hiperparametrov na rezultate učenja. Za raziskavo uporabimo modele naučene na podatkovni zbirki ImageNet, ki jih s pomočjo prenosnega učenja prilagodimo za klasifikacijo ljudi na podlagi njihovega uhlja. Zaradi vpliva strojne opreme, testiramo tudi čas učenja posameznih modelov, ter povprečne hitrosti njihovih napovedi. Ugotavljamo, da je za našo učno množico najbolj primeren model ResNet18, z najvišjo točnostjo 56 odstotkov, sledi pa mu GoogLeNet z 51 odstotki.

Language:Slovenian
Keywords:Nevronske mreˇze, klasifikacija, prenosno uˇcenje, prileganje podatkov, regularizacija, augmentacija, ImageNet, razpoznava uhljev, biometrija uhljev.
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-152691 This link opens in a new window
COBISS.SI-ID:162224131 This link opens in a new window
Publication date in RUL:04.12.2023
Views:500
Downloads:66
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Learning optimization of deep biometric models
Abstract:
The key factor in the performance of deep biometric models lies in their learning process. This study investigates different approaches to optimize the learning of deep neural networks, aiming to enhance their classification accuracy. We focus on methods that reduce overfitting and examine the impact of various hyperparameters. To conduct this research, we utilize models trained on the ImageNet dataset, which we fine-tune using transfer learning to classify people based on their ears. Furthermore, we assess the training times and average prediction speeds of individual models, considering hardware constraints. The results show that ResNet18 is the most suitable model for our training data, achieving best accuracy of 56%, closely followed by GoogLeNet with 51%

Keywords:Neural networks, classification, transfer learning, data fitting, regularization, augmentation, ImageNet, ear recognition, ear biometrics.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back