izpis_h1_title_alt

Proteinski ojačevalci kalcijeve signalizacije v sesalskih celicah
ID Jazbec, Vid (Author), ID Benčina, Mojca (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (8,66 MB)
MD5: 17C0BC9C5DC07A364D6AEDD08EE6E1FD
.pdfPDF - Appendix, Download (5,02 MB)
MD5: F47ACC306794229165E74EC40C59F67C

Abstract
Nadzor nad delovanjem celic predstavlja eno glavnih področij sintezne biologije. Vsestranskost kalcijevih ionov v celičnih procesih ponuja možnosti natančnega uravnavanja mnogih celičnih lastnosti in funkcij. Pomembna lastnost kalcijeve signalizacije je tudi dejstvo, da lahko vnos kalcija povzročimo z neinvazivnimi metodami, ko sta ultrazvok in segrevanje. Uravnavanje koncentracije kalcijevih ionov je za delovanje celic zelo pomembno. Ker s kemično ali fizikalno stimulacijo posegamo v to ravnovesje, se celica na to odziva in onemogoča preprosto stimulacijo. V okviru dela smo razvili sistem za uravnavanje vnosa kalcijevih ionov v celico na osnovi proteolize in sistem za ojačanje ultrazvočnega signala na podlagi proteinskih plinskih veziklov, ki ojača vnos Ca2+ v sesalske celice. Za uravnavanje vnosa Ca2+ smo se naslonili na proteinski par, ki uravnava založno reguliran vnosa kalcija: STIM1 in Orai. Na osnovi aktivne domene proteina STIM1 in ovitih vijačnic smo pripravili protein imenovan PACE, ki se aktivira ob proteolitski cepitvi. Aktivacija proteina vodi do vnosa Ca2+ ionov v citosol preko kanalov Orai. Dosežena koncentracija Ca2+ ionov preko kalmodulina in kalcinevrina povzroči jedrni vnos umetnih, od kalcija odvisnih, transkripcijskih faktorjev in izražanje tarčnih genov. Na podlagi prvotnega proteina PACE smo pripravili tudi različico, ki jo lahko aktivirata dve različni proteazi. Z izražanjem proteina PACE in proteaz, ki se aktivirajo z majhnimi molekulami v T celicah smo pokazali, da lahko nadziramo vnos Ca2+ in izražanje citokinov IL2 in TNF?. Drugačen pristop k ojačanju vnosa Ca2+ v celico smo ubrali z uporabo proteinskih plinskih veziklov. Plinski vezikli organizma Bacillus megaterium, ki jih lahko izražamo v bakterijah E. coli, se zaradi svoje votle strukture obnašajo ob akustični stimulaciji drugače kot sesalske celice. Zaradi te lastnosti lahko ojačajo z ultrazvokom povzročeno mehansko silo, ki povzroči odprtje kalcijevih kanalov na membrani. Da bi bolje razumeli sestavo proteinskih plinskih veziklov, smo z izbijanjem genov ugotovili, da proteini GvpR, GvpT in GvpU niso nujni za izgradnjo funkcionalnih veziklov. S pomočjo pretočne citometrije in krioelektronske mikroskopije smo ugotovili, da se protein GvpJ tesno veže na plinske vezikle, N končno sklapljanje proteina GvpN s fluorescenčnim proteinom pa povzroči, da plinski vezikli ne tvorijo cilindrične strukture in ostanejo vretenaste oblike. Z uporabo proteina GvpC iz genskega klastra organizma Anabaena flos aquae smo uspeli plinske vezikle pripeti na membrano sesalskih celic. Celice, ki so imele na površini plinske vezikle, so ob stimulaciji z ultrazvokom izražale več reporterskega proteina kot celice brez plinskih veziklov. Tako genetsko kodirani modificirani plinski vezikli kot tudi sintetični znotrajcelični ojačevalci so novo razvito orodje za povečanje občutljivosti na blage mehanske dražljaje. Njihova aktivnost podaljša trajanje in poveča amplitudo citosolnega Ca2+ in s tem posledično poveča aktivacijo transkripcijo sintetičnih genov.

Language:Slovenian
Keywords:Kalcijeva signalizacija, ultrazvok, plinski vezikli, umetna celična vezja
Work type:Doctoral dissertation
Organization:MF - Faculty of Medicine
Year:2023
PID:20.500.12556/RUL-152644 This link opens in a new window
Publication date in RUL:02.12.2023
Views:1233
Downloads:131
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Protein dependent calcium signalization enhancers in mammalian cells
Abstract:
Cell function control represents one of the main areas of synthetic biology. The versatility of calcium ions in cellular processes offers opportunities for precise regulation of many cellular properties and functions. An important characteristic of calcium signaling is also the fact that calcium entry can be induced by non-invasive methods such as ultrasound and heating. Regulating the concentration of calcium ions is crucial for cell function. When we interfere with this balance through chemical or physical stimulation, the cell responds and prevents easy stimulation. In the course of our work, we developed a system for regulating the influx of calcium ions into cells based on proteolysis and a system for enhancing ultrasound signals using protein gas vesicles, which enhances the uptake of Ca2+ into mammalian cells. To regulate Ca2+ influx, we relied on a protein pair that controls the tightly regulated intake of calcium: STIM1 and Orai. Based on the active domain of the STIM1 protein and coiled coils, we prepared a protein called PACE, which is activated by proteolytic cleavage. Activation of the protein leads to the entry of Ca2+ ions into the cytosol via Orai channels. The achieved concentration of Ca2+ ions, through calmodulin and calcineurin, results in the nuclear entry of synthetic calcium-dependent transcription factors and the expression of target genes. Based on the original PACE protein, we also prepared a version that can be activated by two different proteases. By expressing the PACE protein and proteases that are activated by small molecules in T cells, we demonstrated that we can control the entry of Ca2+ and the expression of cytokines IL2 and TNFα. A different approach to enhancing Ca2+ uptake into cells was taken using protein gas vesicles. Gas vesicles from the organism Bacillus megaterium, which can be expressed in E. coli bacteria, behave differently under acoustic stimulation due to their hollow structure compared to mammalian cells. Because of this property, they can amplify the mechanical force induced by ultrasound, leading to the opening of calcium channels on the membrane. To better understand the composition of protein gas vesicles, we found through gene knockout experiments that the proteins GvpR, GvpT, and GvpU are not essential for building functional vesicles. Using flow cytometry and cryo-electron microscopy, we determined that the protein GvpJ tightly binds to gas vesicles, and the N-terminal fusion of the GvpN protein with a fluorescent protein causes the gas vesicles to retain a spindle-like shape. By using the GvpC protein from the gene cluster of the organism Anabaena flos aquae, we successfully attached gas vesicles to the membrane of mammalian cells. Cells with gas vesicles on their surface expressed more reporter protein when stimulated with ultrasound compared to cells without gas vesicles. Both genetically encoded modified gas vesicles and synthetic intracellular amplifiers are newly developed tools for increasing sensitivity to mild mechanical stimuli. Their activity extends the duration and increases the amplitude of cytosolic Ca2+ and, consequently, enhances the activation of synthetic gene transcription.

Keywords:Calcium signaling, ultrasound, gas vesicles, synthetic cellular circuits

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back