izpis_h1_title_alt

Reševanje eliptičnih parcialnih diferencialnih enačb v Bernstein-Bézierjevi reprezentaciji : magistrsko delo
ID Štebljaj, Živa (Author), ID Grošelj, Jan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,14 MB)
MD5: D0E3A79C98CD0B6636231E50893D6C73

Abstract
Magistrsko delo obravnava metodo za numerično reševanje eliptičnih robnih problemov dveh spremenljivk v šibki obliki z uporabo Bernsteinove baze. Podani so pogoji za obstoj in enoličnost rešitve in njene aproksimacije ter ocena napake. Metoda temelji na metodi končnih elementov, ki je tudi opisana v magistrskem delu. Rešitev iščemo v prostoru polinomskih zlepkov nad triangulacijami, pri čemer je zlepek nad posameznim trikotnikom namesto v običajni polinomski bazi zapisan v Bernsteinovi bazi. Opisane so lastnosti te baze, ki omogočajo, da približek iščemo kot rešitev optimizacijskega problema z dodatnimi pogoji, ki zagotovljajo izpolnjevanje robnih pogojev in dovoljšen red gladkosti.

Language:Slovenian
Keywords:parcialne diferencialne enačbe, metoda končnih elementov, Bernsteinovi bazni polinomi, prostori zlepkov
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-152451 This link opens in a new window
UDC:519.6
COBISS.SI-ID:173441539 This link opens in a new window
Publication date in RUL:25.11.2023
Views:607
Downloads:53
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Solving elliptic partial differential equations in Bernstein-Bézier representation
Abstract:
The master's thesis addresses a method for numerically solving elliptic boundary value problems of two variables in weak form using the Bernstein basis. It provides conditions for the existence and uniqueness of the solution and its approximation, along with an error estimate. The method is based on the finite element method, which is also described in the master's thesis. The solution is sought in the space of polynomial splines over triangulations, where each spline over an individual triangle is represented in the Bernstein basis rather than the typical polynomial basis. The thesis describes the properties of this basis, which enable us to seek an approximation as the solution to an optimization problem with additional constraints to ensure the satisfaction of boundary conditions and sufficient smoothness order.

Keywords:partial differential equations, finite element method, Bernstein basis polynomials, spline spaces

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back