izpis_h1_title_alt

Planiranje poti avtonomnih mobilnih sistemov s časovnim optimiranjem in omejitvami trzaja
ID BENKO LOKNAR, MARTINA (Author), ID Blažič, Sašo (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (9,68 MB)
MD5: 0F7D65DFC2D3263A2103E82C82469DAF

Abstract
Doktorska disertacija je vsebinsko razdeljena na tri dele. V prvem delu je obravnavan problem računsko učinkovitega planiranja časovno minimalnega hitrostnega profila za avtonomne mobilne sisteme na dani ravninski krivulji. Pri tem mora gibanje upoštevati omejitve hitrosti, pospeška in trzaja. V nadaljevanju je obravnavan problem planiranja časovno minimalnih trajektorij, pri čemer na uspešnost in učinkovitost izvedbe vpliva izbor družine krivulj ter njihov parametrični opis. V zadnjem poglavju smo proučevali problem sledenja trajektoriji za realni avtonomni mobilni robot, ki se giba po časovno minimalni trajektoriji z omejitvami hitrosti, pospeška in trzaja. Obravnavani primeri krivulj v geometrijskem smislu predstavljajo reprezentativne odseke poti v realnih industrijskih okoljih. Pri raziskovanju je bilo uporabljeno simulacijsko okolje Matlab. Razvili smo algoritem, ki generira hitrostni profil z upoštevanjem omejitev hitrosti, pospeška in trzaja, ki so bile izražene po komponentah v tangentni in radialni obliki. Osnovna metodologija pri reševanju tega problema je bila numerično reševanje dane diferencialne enačbe z znanimi začetnimi pogoji. Predstavljeni algoritem v prvem koraku v točkah največje ukrivljenosti določi vrednosti hitrosti ter radialnega in tangentnega pospeška in v okolici teh točk določi lokalne hitrostne profile, od koder je določen časovno minimalni hitrostni profil z omejitvami hitrosti in pospeška. V drugem koraku algoritma je obstoječi hitrostni profil spremenjen tako, da so upoštevane tudi omejitve trzaja. Problem načrtovanja trajektorij smo rešili s sklopitvijo postopka, ki načrtuje gladke poti, sestavljene iz Bézierovih krivulj, in algoritma, ki zagotavlja časovno minimalnost hitrostnih profilov na posameznih segmentih omejenega prostora. Poskrbeli smo, da so hitrosti in pospeški v spojih zlepkov zvezni. Metodologija dela je zajemala opis novega načina konstrukcije Bézierovih krivulj petega reda, kar je omogočilo enostavno in intuitivno parametrizacijo. Prednosti uporabe razvitega algoritma planiranja trajektorij smo demonstrirali v dveh simulacijah: na dirkalni stezi in v avtomatiziranem skladišču. Glavna motivacija pri izvedbi vodenja po časovno minimalni trajektoriji pa je bila preizkus razvitih metod planiranja poti in trajektorij na realnem robotu. Predlagali smo algoritem vodenja za sledenje trajektoriji, ki temelji na modelu pogreška kinematike tricikla. Sledenje referenčni trajektoriji je bilo izvedeno s prediktivnim vodenjem na osnovi modela, pri čemer je bila kriterijska funkcija minimizirana z optimizacijo z rojem delcev. Predstavljene pristope smo preverili s simulacijami in eksperimenti na realnem robotu. Glavni prednosti in novosti predlaganega algoritma za izračun hitrostnega profila sta računsko učinkovit dvokoračni pristop in celostna obravnava trzaja po komponentah. V študijo smo vključili tudi statistično analizo za demonstracijo nizke računske zahtevnosti. Pri planiranju trajektorij smo pokazali učinkovitost in enostavnost izvedbe predstavljene konstrukcije Bézierovih krivulj petega reda. Z algoritmom za izračun hitrostnega profila tvorita izjemno uporabno orodje pri grajenju časovno minimalnih trajektorij, kar dokazujejo rezultati simulacij na dirkalni stezi in v avtomatiziranem skladišču. Simulacijski rezultati vodenja po časovno minimalni trajektoriji so dokazali robustno delovanje v navzočnosti različnih neidealnih pogojev, kot so merilni šum, zakasnitve in omejene regulirne hitrosti, eksperimentalni rezultati pa so potrdili možnost uporabe v realnem času. Pristopi, ki so predstavljeni v tej doktorski disertaciji, imajo veliko možnih aplikacij. Uporabni so predvsem v primerih, kjer je pomemben dejavnik udobje vožnje ali pa v časovno kritičnih transportih; zlasti za vozila v avtonomnih skladiščih, kjer je čas potovanja ključni dejavnik za učinkovito delovanje.

Language:Slovenian
Keywords:avtonomni mobilni sistemi, hitrost, pospešek, trzaj, planiranje poti, planiranje trajektorij
Work type:Doctoral dissertation
Organization:FE - Faculty of Electrical Engineering
Year:2023
PID:20.500.12556/RUL-152358 This link opens in a new window
COBISS.SI-ID:180731651 This link opens in a new window
Publication date in RUL:22.11.2023
Views:495
Downloads:66
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Path planning for autonomous mobile systems with time optimization and jerk restrictions
Abstract:
The content of the doctoral dissertation is divided into three parts. In the first part, the problem of computationally efficient planning of the minimum-time velocity profile for autonomous mobile systems on a given plane curve is discussed. In doing so, the movement must take into account the velocity, acceleration and jerk limitations. In the following chapter, the problem of planning minimum-time trajectories is discussed, whereby the success and efficiency of execution is influenced by the selection of the family of curves and their parametric description. In the third part, we studied the trajectory tracking problem for a real autonomous mobile robot moving along a minimum-time trajectory with velocity, acceleration and jerk constraints. The discussed examples of curves in the geometric sense are representative path sections in real industrial environments. The simulation environment Matlab was used in the research. We developed an algorithm that generates a velocity profile by taking into account velocity, acceleration and jerk constraints, which were expressed by components in tangent and radial form. The basic methodology in solving this problem was to numerically solve a given differential equation with known initial conditions. In the first step, the presented algorithm determines the values of speed and radial and tangential acceleration in the points of maximum curvature and determines the local velocity profiles in the vicinity of these points, from where the minimum-time velocity profile with velocity and acceleration limitations is determined. In the second step of the algorithm, the existing velocity profile is modified in such a way that the jerk constraints are also taken into account. We solved the trajectory planning problem by combining a procedure that generates smooth paths consisting of Bézier curves and the algorithm that ensures the minimum-time velocity profiles on individual segments of a limited space. We made sure that the velocities and accelerations in the joints of the segments are continuous. The methodology of the work included the description of a new way of constructing fifth order Bézier curves, which enabled easy and intuitive parameterization. The advantages of using the developed trajectory planning algorithm were demonstrated in two simulations: on a race track and in an automated warehouse. The main motivation for the implementation of the minimum-time trajectory tracking was to test the developed path and trajectory planning methods on a real robot. We proposed a trajectory tracking algorithm based on an error model of a tricycle drive. Tracking of the reference trajectory was performed using model-based predictive control, where the criterion function was minimized by particle swarm optimization. We verified the presented approaches with simulations and experiments on a real robot. The main advantages and novelties of the proposed algorithm for the calculation of the velocity profile are the computationally efficient two-step approach and the complete treatment of the jerk by components. We also included a statistical analysis in the study to demonstrate the low computational complexity. When planning trajectories, we demonstrated the efficiency and ease of implementation of the presented construction of fifth order Bézier curves. Together with the algorithm for calculating the velocity profile, they form an extremely useful tool for constructing minimum-time trajectories, as evidenced by the results of simulations on the race track and in the automated warehouse. Simulation results of minimum-time trajectory following proved robust performance in the presence of various non-ideal conditions, such as measurement noise, delays and limited control speeds, and experimental results confirmed the possibility of real-time use. The approaches presented in this PhD thesis have many possible applications. They are especially useful in cases where driving comfort is an important factor or in time-critical transports; especially for vehicles in autonomous warehouses where travel time is a key factor for efficient operation.

Keywords:autonomous mobile systems, velocity, acceleration, jerk, path planning, trajectory planning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back