izpis_h1_title_alt

Razlaga besedilnih klasifikatorjev s protiprimeri
ID ŠUBIC, GAL (Author), ID Robnik Šikonja, Marko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (633,23 KB)
MD5: 12150F55D9816F493DE62796ED71FC1E

Abstract
Razlaga s protiprimeri je metoda razlage napovednih modelov strojnega učenja. V nalogi opišemo več načinov generiranja protiprimerov pri besedilnih klasifikatorjih, LIME-C, Polyjuice in ChatGPT, ter izpostavimo njihove ključne značilnosti. Uporabimo jih na treh različnih besedilnih podatkovnih množicah. Uporabljene metode in pridobljene protiprimere primerjamo in jih ocenimo po kriterijih za ocenjevanje kakovosti protiprimerov. Ugotovimo, da ni ene same najboljše rešitve in da ima vsak pristop prednosti in slabosti. Kljub temu se izkaže, da so trenutno najsplošnejša in uporabna rešitev protiprimeri, generirani z velikim jezikovnim modelom ChatGPT.

Language:Slovenian
Keywords:strojno učenje, razlaga napovednega modela strojnega učenja, protiprimeri, razlaga s protiprimeri, LIME-C, Polyjuice, ChatGPT
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-151705 This link opens in a new window
COBISS.SI-ID:170240003 This link opens in a new window
Publication date in RUL:17.10.2023
Views:870
Downloads:76
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Counterfactual explanation of text classifiers
Abstract:
Counterfactual explanations are used for interpreting predictive machine learning models. We describe three methods for generating counterfactual examples, LIME-C, Polyjuice and ChatGPT, and highlight their key features. We apply them to three different text datasets. We compare the methods used and the obtained counterfactual examples and evaluate them according to the quality criteria of counterfactual examples. We conclude that there is no single best solution and that each approach has advantages and disadvantages. Nevertheless, the most general and useful solution at the moment are the counterfactual examples generated with ChatGPT large language model.

Keywords:machine learning, explaining machine learning prediction model, counterfactual examples, counterfactual explanation, LIME-C, Polyjuice, ChatGPT

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back