izpis_h1_title_alt

Zaznavanje samomorilnih misli v spletnih objavah z uporabo velikih jezikovnih modelov : magistrsko delo
ID Kerkez, Pavle (Author), ID Škulj, Damjan (Mentor) More about this mentor... This link opens in a new window, ID Petrič, Gregor (Comentor)

.pdfPDF - Presentation file, Download (1,13 MB)
MD5: 2CA835DC702EFC808F89C34113B40545

Abstract
Naraščajoč pomen spletnega komuniciranja v sodobni družbi je poudaril potrebo po razumevanju in prepoznavanju samomorilnih misli v teh spletnih prostorih. Spletne skupnosti, še posebej tiste, osredotočene na duševno zdravje, pogosto vključujejo komunikacije, ki so tesno prepletene z izrazi samomorilnih misli. Medtem ko je zaznavanje teh izrazov pomembno za raziskave, je tudi ključnega pomena za proaktivno moderiranje in preventivne strategije na teh platformah. Tradicionalne metode strojnega učenja so pokazale obetajoče rezultate pri prepoznavanju samomorilnih nagnjenj v besedilnih podatkih. Vendar pa pojav velikih jezikovnih modelov (LLM), kot je GPT-4, zasnovanih na sofisticiranih arhitekturah globokega učenja, ponuja potencial za globlje in bolj niansirano zaznavanje subtilnih namigov, povezanih s samomorilnimi mislimi, ki so pogosto prepleteni z drugimi temami in jih je težko ločiti. Osrednja tema te raziskave je preučiti sposobnost LLM pri zaznavanju samomorilne vsebine v spletnih vsebinah. Cilji vključujejo 1) vdelavo besedil in njihovo združevanje na podlagi podobnosti vsebine ter 2) fino nastavitev modelov za razlikovanje in kategorizacijo dokumentov glede na prisotnost pristnih samomorilnih misli nasproti splošnim razpravam o duševnem zdravju. Rezultati potrjujejo učinkovitost LLM v obeh nalogah, saj uspešno združujejo objave na podlagi njihove podobnosti vsebine, da ustvarijo oznake razredov, poleg tega pa imajo visoko natančnost in obnovitev pri razlikovanju samomorilnih misli od splošnih pripovedi o duševnem zdravju.

Language:English
Keywords:zaznavanje samomora, strojno učenje, veliki jezikovni modeli, vložitve dokumentov, hierarhično združevanje
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FDV - Faculty of Social Sciences
Place of publishing:Ljubljana
Publisher:P. Kerkez
Year:2023
Number of pages:66 str.
PID:20.500.12556/RUL-151299 This link opens in a new window
UDC:316.624(043.2)
COBISS.SI-ID:167950083 This link opens in a new window
Publication date in RUL:04.10.2023
Views:6424
Downloads:403
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Suicidal ideation detection in online posts using Large Language Models
Abstract:
The increasing significance of online communication in contemporary society has underlined the need to understand and identify suicidal ideation within these online spaces. Online communities, especially those centered on mental health, frequently feature communications deeply interwoven with expressions of suicidal ideation. While detecting these expressions is important for research, it is also fundamental for proactive moderation and prevention strategies within these platforms. Traditional machine learning methodologies have shown promise in recognizing suicidal tendencies in textual data. However, the emergence of large language models (LLM’s) like GPT-4, built on sophisticated deep learning architectures, offers potential for a deeper and more nuanced detection of subtle cues linked with suicidal ideation that are often mingled with other themes and difficult to isolate. The core focus of this research is to examine the capability of LLM's in detecting suicidal content in online content. The objectives include 1) embedding the texts and clustering them based on content similarity, and 2) fine-tuning the models to distinguish and categorize documents based on the presence of genuine suicidal ideation versus general mental health discussions. The results validate the efficacy of LLMs in both tasks, achieving successful clustering of posts based on their content similarities to generate class labels, as well as having high precision and recall in differentiating suicidal ideation from general mental health narratives.

Keywords:suicide detection, machine learning, large language models, document embedding, clustering

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back