izpis_h1_title_alt

Primerjava metod za napovedovanje vrednosti delniških indeksov
ID KRANJEC, GREGA (Author), ID Hovelja, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (653,70 KB)
MD5: B714EED678721D24F13B7750442862D3

Abstract
Diplomsko delo obravnava primerjavo treh metod za napovedovanje vrednosti delniških indeksov. Dve metodi za napovedovanje sta uporabljali izključno strojno učenje, ena pa je slonela na statistični analizi. Cilj dela je bil ugotoviti, če se vrednosti delniških indeksov da napovedovati in katera od izbranih metod je najboljša. Primerjava se je naredila na podatkih treh različnih indeksov iz treh različnih trgov. Napovedi so se primerjale po različnih merah, največja teža pa je bila dana vrednosti končnega kapitala. Za simulacijo trgovanja sta bila razvita dva različna algoritma. Rezultati so prikazali, da se vrednosti delniških indeksov da napovedovati, vendar ne z vsemi metodami. Izkazalo se je tudi, da na končni kapital lahko vplivamo tudi s samim algoritmom za trgovanje. Vse metode so napovedovale bolje kot strategija kupi in drži, ena od metod pa je napovedovala tudi z dobičkom v primerjavi z inflacijo. Ugotovilo se je, da na primeru napovedovanja vrednosti delniških trgov standardne mere za ocenjevanje kakovosti rezultatov niso vedno primerne.

Language:Slovenian
Keywords:delnice, strojno učenje, primerjava, časovne vrste, napovedovanje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2023
PID:20.500.12556/RUL-151287 This link opens in a new window
COBISS.SI-ID:170228483 This link opens in a new window
Publication date in RUL:03.10.2023
Views:709
Downloads:67
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comparison of methods for stock index forecasting
Abstract:
This thesis compares three different methods for predicting the value of stock indices. Two of the methods use machine learning to forecast values, while one uses a combination of statistical analysis and machine learning. The aim of the thesis was to figure out if it is possible to predict future stock index values and to find which of the methods is the best. The comparison was done on data of three different stock indices in three different markets. The forecasted values were compared using multiple different metrics, where the value of final equity was given the biggest weight. Two different algorithms were developed for the purpose of trading simulation. The results showed that it is possible to predict future values of stock indices, but not with all methods. They also showed that the results can be positively influenced by trading algorithms. All methods provided predictions good enough to trade better than the buy and hold strategy. One of the methods also ended with a positive final capital even with subtracted inflation. It was found that the standard metrics for assessing the quality of the results are not always suitable, especially in the case of predicting stock index values.

Keywords:stocks, machine learning, comparison, time series, forecasting

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back