izpis_h1_title_alt

Valuations and valuation spectra for division rings and central simple algebras : doctoral thesis
ID Vukšić, Lara (Author), ID Klep, Igor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,04 MB)
MD5: 2FFD2BCB9A31EF65198269D4E4C90134

Abstract
We first introduce the notion of strongly abelian valuations on noncommutative division rings. The value group and residue field of a strongly abelian valuation are both commutative. Then we classify all valuations on the real Weyl algebra with real residue field. These valuations are all strongly abelian. Then we classify all valuations with real residue field on a ring extension of the real Weyl algebra with the real closure of the field of rational functions, where in one case, we use compactness theorem from model theory. These valuations are also strongly abelian. Using this classification, we describe all valuations on the real Weyl algebra that extend to the above mentioned ring extension. We show that Kaplansky's theorem which states that all extensions by limits of pseudo-convergent sequences are immediate does not hold for noncommutative division rings in general. We describe all orderings on the real Weyl algebra and its extension with the real closure of the field of rational functions. Lastly, we describe the possible application of the construction of valuations on the real Weyl algebra to other skew polynomial rings.

Language:English
Keywords:Weyl algebra, noncommutative valuations, skew polynomial rings, orderings, extensions of valuations, extensions of orderings.
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-151176 This link opens in a new window
UDC:512
COBISS.SI-ID:166658819 This link opens in a new window
Publication date in RUL:30.09.2023
Views:932
Downloads:84
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Valuacije in valuacijski spektri za nekomutativne obsege in centralno enostavne algebre
Abstract:
Najprej vpeljemo pojem krepko abelove valuacije na nekomutativnih obsegih. Za krepko abelove valuacije velja, da sta tako valuacijska grupa kot tudi obseg ostankov komutativna. Nato klasificiramo vse valuacije na realni Weylovi algebri, ki imajo realno polje ostankov. Izkaže se, da so te valuacije vse krepko abelove. Nato klasificiramo valuacije na razširitvi realne Weylove algebre z realnim zaprtjem polja realnih racionalnih funkcij, ki imajo realno polje ostankov, pri čemer se pri eni skupini takih valuacij tega lotimo s pomočjo izreka o kompaktnosti iz teorije modelov. Tudi te valuacije so krepko abelove. S pomočjo te klasifikacije opišemo vse valuacije na realni Weylovi algebri, ki se razširijo na večji kolobar. Pokažemo, da izrek Kaplanskega, po katerem je vsaka razširitev polja z valuacijo z limitami psevdo-konvergentnih zaporedij neposredna, v splošnem ne velja za nekomutativne obsege. Opišemo vse ureditve Weylove algebre in njene razširitve z realnim zaprtjem polja realnih funkcij. Nazadnje opišemo možnosti, kako bi lahko predstavljeno konstrukcijo valuacij na Weylovi algebri uporabili za opis valuacij na drugih kolobarjih nekomutativnih polinomov.

Keywords:Weylova algebra, nekomutativne valuacije, nekomutativni polinomi, urejenost, razširitve valuacij, razširitve urejenosti

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back