Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Bordering of symmetric matrices and an application to the minimum number of distinct eigenvalues for the join of graphs
ID
Abiad, Aida
(
Author
),
ID
Fallat, Shaun M.
(
Author
),
ID
Kempton, Mark
(
Author
),
ID
Levene, Rupert H.
(
Author
),
ID
Oblak, Polona
(
Author
),
ID
Šmigoc, Helena
(
Author
),
ID
Tait, Michael
(
Author
),
ID
Vander Meulen, Kevin N.
(
Author
)
PDF - Presentation file,
Download
(462,70 KB)
MD5: 568ECA4D1C39DD627344BF1A2FDB6889
URL - Source URL, Visit
https://www.sciencedirect.com/science/article/pii/S0024379523003506
Image galllery
Abstract
An important facet of the inverse eigenvalue problem for graphs is to determine the minimum number of distinct eigenvalues of a particular graph. We resolve this question for the join of a connected graph with a path. We then focus on bordering a matrix and attempt to control the change in the number of distinct eigenvalues induced by this operation. By applying bordering techniques to the join of graphs, we obtain numerous results on the nature of the minimum number of distinct eigenvalues as vertices are joined to a fixed graph.
Language:
English
Keywords:
inverse eigenvalue problem
,
minimum number of distinct eigenvalues
,
borderings
,
joins of graphs
,
paths
,
cycles
,
hypercubes
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Version of Record
Year:
2023
Number of pages:
Str. 104-126
Numbering:
Vol. 679
PID:
20.500.12556/RUL-150996
UDC:
519.17
ISSN on article:
0024-3795
DOI:
10.1016/j.laa.2023.09.013
COBISS.SI-ID:
165826307
Publication date in RUL:
26.09.2023
Views:
465
Downloads:
61
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Linear algebra and its applications
Shortened title:
Linear algebra appl.
Publisher:
Elsevier
ISSN:
0024-3795
COBISS.SI-ID:
1119247
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Secondary language
Language:
Slovenian
Keywords:
inverzni problem lastnih vrednosti
,
najmanjše število različnih lastnih vrednosti
,
ograjevanje
,
spoj grafov
,
poti
,
cikli
,
hiperkocke
Projects
Funder:
Other - Other funder or multiple funders
Funding programme:
Research Foundation Flanders (FWO)
Project number:
1285921N
Funder:
Other - Other funder or multiple funders
Funding programme:
NSERC, Discovery Grant
Project number:
RGPIN–2019–03934
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0222
Name:
Algebra, teorija operatorjev in finančna matematika
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-3004
Name:
Hkratna podobnost matrik
Funder:
NSF - National Science Foundation
Project number:
DMS-2011553
Funder:
Other - Other funder or multiple funders
Funding programme:
Villanova University, Summer Grant
Funder:
Other - Other funder or multiple funders
Funding programme:
NSERC, Discovery Grant
Project number:
RGPIN–2022–05137
Funder:
Other - Other funder or multiple funders
Funding programme:
American Institute of Mathematics
Name:
Inverse eigenvalue problems for graphs
Funder:
NSF - National Science Foundation
Name:
Inverse eigenvalue problems for graphs
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back