izpis_h1_title_alt

Centralni limitni izrek in paroma neodvisne slučajne spremenljivke : delo diplomskega seminarja
ID Šenk, Sebastjan (Author), ID Raič, Martin (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (548,43 KB)
MD5: ACF34736EA301444DDB085EFB786FA1E

Abstract
V diplomski nalogi preučujemo centralni limitni izrek. Pogledamo si razlike med neodvisnimi in paroma neodvisnimi slučajnimi spremenljivkami, kjer so v obeh primerih spremenljivke enako porazdeljene in imajo končno varianco. Cilj diplomske naloge je prikaz protiprimera, ki pokaže, da lahko, ko vzamemo zaporedje zgolj paroma neodvisnih slučajnih spremenljivk, ki so enako porazdeljene, centralni limitni izrek ne velja več. Eksplicitno bomo zgradili zaporedje paroma neodvisnih slučajnih spremenljivk in potem pokazali, da standardizirana povprečja ne konvergirajo k standardni normalni porazdelitvi. Pri utemeljevanju protiprimera bomo potrebovali veliko naprednih orodij, kot so: pričakovana vrednost in varianca slučajnih vektorjev, karakteristične funkcije, multinomska porazdelitev, porazdelitev hi kvadrat, konvergenca v porazdelitvi in pogojna pričakovana vrednost.

Language:Slovenian
Keywords:centralni limitni izrek, karakteristična funkcija, normalna porazdelitev, neodvisnost, neodvisnost po parih
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-150548 This link opens in a new window
UDC:519.2
COBISS.SI-ID:165441027 This link opens in a new window
Publication date in RUL:20.09.2023
Views:946
Downloads:44
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Central limit theorem and pairwise independent random variables
Abstract:
In this thesis, we study the Central Limit Theorem. We examine the differences between independent and pairwise independent random variables, where in both cases the variables are identically distributed and have finite variance. The aim of the thesis is to demonstrate a counterexample that shows that taking a sequence of only pairwise independent random variables, which are identically distributed, can lead to incorrect interpretation of the Central Limit Theorem. Specifically, we will construct a sequence of pairwise independent random variables and then show that the standardized mean does not converge to the standard normal distribution, as the sample size tends to the infinity. In justifying the counterexample, we will need many advanced tools such as expected value and variance of random vectors, characteristic functions, multinomial distribution, chi-square distribution, convergence in distribution, and conditional expected value.

Keywords:central limit theorem, characteristic function, normal distribution, mutual independence, pairwise independence

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back