izpis_h1_title_alt

Snopi nad okoliši : delo diplomskega seminarja
ID Kobe, Ivan (Author), ID Simpson, Alexander Keith (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (615,85 KB)
MD5: CCDA85CFA345D161AA162AC567CB5423

Abstract
V pričujočem delu diplomskega seminarja bomo predstavili kategorijo okolišev, ki je z vidika teorije kategorij naraven pristop k topologiji in posploši mnoge topološke konstrukcije, med drugim snope. Nato bomo pokazali, da lahko snope nad okoliši obravnavamo tudi z drugačne perspektive, namreč kot poseben primer snopov nad lokacijami, tj. delnimi ureditvami, opremljenimi z Grothendieckovo topologijo. Z uporabo te karakterizacije bomo podali primer presenetljive aplikacije snopov nad nekim okolišem, ki ovrže hipotezo kontinuuma, če slednjo interpretiramo kot trditev o kategoriji snopov nad danim okolišem. Ta argument vsebuje matematično jedro Cohenovega dokaza združljivosti negacije hipoteze kontinuuma z aksiomi Zermelo-Fraenklove teorije množic.

Language:Slovenian
Keywords:okoliš, lokacija, snop, topos, hipoteza kontinuuma
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-150545 This link opens in a new window
UDC:510.6
COBISS.SI-ID:165230595 This link opens in a new window
Publication date in RUL:20.09.2023
Views:833
Downloads:106
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Localic sheaves
Abstract:
In our thesis, we study the category of locales, a natural categorical approach to topology which generalises many topological constructions, e.g. sheaves. We show that sheaves on a locale also have an alternative perspective, since we can view them as a special case of sheaves on a site, i.e. a partially ordered set with a Grothendieck topology. Using this latter formulation we will give a striking application of the category of sheaves on a locale which refutes the continuum hypothesis if the latter is interpreted as a statement about that category. This argument contains the matematical core of Cohens proof of the compatibility of the negation of the continuum hypothesis with the axioms of Zermelo-Fraenkl set theory.

Keywords:locale, site, sheaf, topos, continuum hypothesis

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back