izpis_h1_title_alt

Metode za glajenje podatkov : delo diplomskega seminarja
ID Okorn, Ana Marija (Author), ID Grošelj, Jan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (820,47 KB)
MD5: 09DB0DF1FA767906EFBEAFA981EE4A54

Abstract
Ob vseprisotni digitalizaciji procesov postaja razumevanje in filtriranje podatkov vedno bolj pomembno. Realni podatki so običajno skupek trenda in šuma. Metode za glajenje podatkov nam pomagajo pri odstranitvi šuma in razkrivanju morebitnih trendov in vzorcev v podatkih. Številne tovrstne metode temeljijo na lokalnem (uteženem) polinomskem glajenju. Diplomsko delo vsebuje opis in rešitev splošnega problema lokalnega polinomskega glajenja. Izpeljani so osnovni in najpogosteje uporabljani primeri glajenja (glajenje s polinomi ničelne, prve in druge stopnje). Delo obravnava tudi posplošeno lokalno polinomsko glajenje z utežmi. Sledi opis metode drsečega povprečja, metode LOWESS, metode LOESS in Savitzky-Golayjevega filtra. V zadnjem delu so predstavljeni primeri, ki demonstrirajo glajenje podatkov z obravnavanimi metodami na različnih tipih podatkov. Za ta namen je uporabljena in opisana implementacija metod v programskem paketu Matlab.

Language:Slovenian
Keywords:lokalno (uteženo) polinomsko glajenje, drseče povprečje, LOESS, LOWESS, Savitzky-Golay filter, Curve Fitting Toolbox v programu Matlab
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2023
PID:20.500.12556/RUL-150541 This link opens in a new window
UDC:519.6
COBISS.SI-ID:165086979 This link opens in a new window
Publication date in RUL:20.09.2023
Views:976
Downloads:70
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Methods for data smoothing
Abstract:
In the omnipresent digitalization of processes, the understanding and filtering of data is becoming ever more important. Real data are usually a combination of trend and noise. Data smoothing methods help us to remove noise and reveal possible trends and patterns in the data. Many of these methods are based on local (weighted) polynomial smoothing. The thesis contains a description and solution of the general problem of local polynomial smoothing. The basic and most commonly used examples of smoothing (smoothing with polynomials of zero, first and second degree) are derived. The thesis also discusses the generalized local polynomial smoothing with weights. This is followed by a description of the moving average method, the LOWESS method, the LOESS method and the Savitzky-Golay filter. In the last part, examples are presented that demonstrate data smoothing by the considered methods on different types of data. For this purpose the implementation of the methods in the program package Matlab is used and described.

Keywords:locally (weighted) polynomial smoothing, moving average, LOESS, LOWESS, Savitzky--Golay filter, Curve Fitting Toolbox in Matlab

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back