izpis_h1_title_alt

Izboljšava lokalnih napovedi temperature s strojnim učenjem
ID Kuralt, Petra (Author), ID Žunkovič, Bojan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,46 MB)
MD5: 5623D91059D3AC48A0365BD9C66C5806

Abstract
V diplomskem delu smo iskali rešitev za lokalno izboljšavo napovedovanja temperature s strojnim učenjem. Zgradili smo tri različne modele napovedovanja, ki za vhod združijo napovedi globalnega numeričnega vremenskega modela ECMWF s trenutnimi meritvami atmosfere na specifični lokaciji. Ker so numerični modeli omejeni s prostorsko ločljivostjo in napovedujejo zgolj na diskretnih mrežnih točkah, smo kot atribute vzeli štiri najbližje točke napovedi ECMWF modela ter jih združili z meritvami različnih vremenskih spremenljivk iz domače vremenske postaje. Napovedovali smo urno temperaturo do 72 ure vnaprej ter implementirali tri modele strojnega učenja: ridge regresijo, naključne gozdove in XGBoost. Modele smo testirali z 72 podatkovnimi množicami, kjer je bila vsaka množica zgrajena iz enakih atributov, a drugačne ciljne spremenljivke, skladne z dolžino napovedi. Uspešnost algoritmov smo na koncu ovrednotili s tremi metrikami in s Friedman ter Nemenyi statističnima testoma, kjer smo ugotovili, da vsi trije modeli v primerjavi z modelom ECMWF izboljšajo napoved temperature. Najuspešnejši izmed njih je bil model XGBoost.

Language:Slovenian
Keywords:Napovedovanje vremena, napovedovanje temperature, numerični model ECMWF, ridge regresija, naključni gozdovi, XGBoost
Work type:Undergraduate thesis
Organization:FE - Faculty of Electrical Engineering
Year:2023
PID:20.500.12556/RUL-150256 This link opens in a new window
COBISS.SI-ID:164834307 This link opens in a new window
Publication date in RUL:15.09.2023
Views:904
Downloads:59
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Improvement of local temperature forecasts with machine learning
Abstract:
In this thesis, we sought to improve local temperature prediction with machine learning. We built three different forecasting models that combine the predictions of the global numerical weather prediction model ECMWF with current atmospheric measurements at a specific location as input. Since numerical models are limited by spatial resolution and only predict at discrete grid points, we took four closest points of the ECMWF model predictions as attributes and combined them with measurements of different weather variables from a home weather station. We predicted hourly temperature up to 72 hours in advance and implemented three machine learning models: ridge regression, random forests and XGBoost. We tested the models with 72 datasets, where each dataset was constructed from the same attributes but different target variables, corresponding to the length of the forecast. Finally, the performance of the algorithms was evaluated using three regression metrics together with Friedman and Nemenyi statistical tests. We concluded that all three models improved the temperature prediction compared to the ECMWF model with XGBoost being the best performing model.

Keywords:Weather forecasting, temperature forecasting, numerical weather prediction model ECMWF, ridge regression, random forests, XGBoost

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back